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PREFACE TO THE FIRST EDITION.

The &quot;Elements of the Method of Least Squares,&quot; published

in 1877, was written with two objects in view : first, to present

the fundamental principles and processes of the subject in so

plain a manner, and to illustrate their application by such

simple and practical examples, as to render it accessible to

civil engineers who have not had the benefit of extended

mathematical training; and, secondly, to give an elementary

exposition of the theory which would be adapted to the needs

of a large and constantly increasing class of students.

In preparing the following pages the author has likewise

kept these two objects continually in mind. While the for

mer work has been used as a basis, the alterations and

additions have been so numerous and radical as to render

this a new and distinct book rather than a second edition.

The arrangement of the theoretical and practical parts is

entirely different. In Chapters I to IV is presented the

mathematical development of the principles, methods, and

formulas; while in Chapters V to IX the application of these

767874



IV PREFACE.

to the different classes of observations is made, and illus-

trated by numerous practical examples. For the use of both

students and engineers, it is believed that this plan will

prove more advantageous than the one previously followed.

Hagen s deduction of the law of probability of error is given,

as well as that of Gauss. More attention is paid to the

laws of the propagation of error, the solution of normal equa

tions, and the deduction of empirical formulas. Many new
illustrative examples of the adjustment and comparison of

observations have been selected from actual practice, and

are discussed in detail. At the end of each chapter are

given a few problems or queries ;
and in the Appendix are

eight tables for abridging computations.

MANSFIELD MERRIMAN.

NOTE TO THE EIGHTH EDITION.

The seventh edition was the result of a thorough revision

and was enlarged by the addition of new matter on the solu

tion of normal equations, on the uncertainty of the probable

error, and on the median. In this edition all known errors

have been corrected and an alphabetical index has been

added. M. M.
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A TEXT-BOOK

ON THE

METHOD OF LEAST SQUARES,

CHAPTER I.

INTRODUCTION.

i. The Method of Least Squares has for its object the

adjustment and comparison of observations. The adjustment
of observations is rendered necessary by the fact, that when
several precise measurements are made, even upon the same

quantity under apparently similar conditions, the results do not

agree. The absolutely true values of the observed quantities

cannot in general be found, but instead must be accepted and

used values, derived from the combination and adjustment of

the measurements, which are the most probable, and hence the

best. The comparison of observations is necessary in order to

determine the relative degrees of precision of different sets

of measurements made under different circumstances, either

for the purpose of properly combining and adjusting them, or

to ascertain the best methods of observation.



INTRODUCTION.

Classification of Observations.

2. Direct observations are those which are made directly

upon the quantity whose magnitude is to be determined. Such
are measurements of a line by direct chaining, or measurements
of an angle by direct reading with a transit. They occur in the

daily practice of every engineer.

Indirect observations are not made upon the quantity whose
size is to be measured, but upon some other quantity or quanti
ties related to it. Such are measurements of a line through
a triangulation by means of a base and observed angles, meas
urements of an angle by regarding it as the sum or difference

of other angles, the determination of the difference of level of

points by readings upon graduated rods set up at different

places, the determination of latitude by observing the altitude

of stars, etc. In fact, the majority of observations in engineer

ing and physical science generally belong to this class.

3. Conditioned observations may be either direct or indirect,

but are subject to some rigorous requirement or condition im

posed in advance from theoretical considerations. As such

may be mentioned : the three measured angles in a plane tri

angle must be so adjusted that their sum shall be exactly 180
;

the sum of all the percentages in a chemical analysis must

equal 100; and the sum of the northings must equal the sum
of the southings in any traverse which begins and ends at the

same point.

Independent observations may be either direct or indirect,

but are subject to no rigorous conditions. Measurements on

two of the angles of a triangle, for instance, are independent ;

for the observed quantities can have no necessary geometrical

dependence one upon the other.

4. As an illustration of these classes, consider the angles
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\

AOB and BOC, having their vertices at the same point,

(Fig. i). If a transit or theodolite be set at O, and the angle
AOB or BOC be measured, each of these measurements is

a direct observation. If, however, an auxiliary station M be

established, and the angles MOA, MOB, and MOC be read,

the observations on AOB and BOC are indirect. Moreover,
whether observed di

rectly or indirectly, the

values obtained for

AOB and BOC are M

independent of each N
other. But if the three

angles A OB, BOC, and

AOC be measured,
these observations are

conditioned, or subject
to the rigorous geomet
rical requirement, that,

when finally adjusted, AOB plus BOC must equal AOC; and
no system of values can be adopted for these three angles which
does not exactly satisfy this condition.

Again : if the sides and angles of a field are measured, each
observation taken alone is direct. If its area is found from
the sides and angles, the measurement of that area is indirect.

Further : any two sides considered are independent of each
other

; but, if all the sides and angles be regarded, they must
fulfil the condition, that, when plotted, they shall form a closed

figure.

Errors of Observations.

5. Constant errors are those produced by well understood

causes, and which may be removed from the observations by
the application of -computed corrections. As such may be

Fig.1.
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mentioned : theoretical corrections, like the effect of tempera
ture upon the length of rods used in measuring a base-line

;

instrumental corrections, like those arising from a known dis

crepancy between the length of the rods and the standard of

measure
;
and personal corrections, like those due to the habits

of the observer, who, in making a contact of the rods, might
err each time by the same constant quantity. Strictly speak

ing, then, constant errors are not errors
;
since they can always

be eliminated from the observations, when the causes that pro
duce them are understood. The first duty of an observer, after

taking his measurements, is to discuss them, and apply as far

as possible the computed corrections, to remove the constant

errors.

6. Mistakes are errors committed by inexperienced and occa

sionally by the most skilled observers, arising from mental

confusion. As such may be mentioned : mistakes in reading

a compass-needle by noting 58 instead of 42; or mistakes in

measuring an angle by sighting at the wrong signal. Such

errors often admit of correction by comparison with other sets

of observations.

7. Accidental errors are those that still remain after all con

stant errors and all evident mistakes have been carefully inves

tigated, and eliminated from the numerical results. Such, for

example, are the errors in levelling arising from sudden expan

sions and contractions of the instrument, or from effects of

the wind, or from the anomalous and changing refraction of the

atmosphere. More than all, however, such errors arise from

the imperfections of the touch and sight of the observer
;
which

render it impossible for him to handle his instruments deli

cately, estimate accurately bisections of signals and small divis

ions of graduation, or keep them continually in adjustment.

These are the errors that appear in all numerical observations,

however carefully the measurements be made, and whose elimi-
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nation is the object of the Method of Least Squares. Al

though at first sight it might seem that such irregular errors

could not come within the province of mathematical investiga

tion, it will be seen in the sequel that they are governed by a

wonderful and very precise law, namely, the law of proba

bility.

8. The word &quot;error,&quot; as used in the following pages, means
in accidental error produced by causes which are numerous, and

whose effects cannot be brought within the scope of physical

investigation. This error is the difference between the true

value of the observed quantity and the result of the measure

ment upon it. Thus, if Z be the true value of an angle, and

Mlt M2 , and M3
be the results of measurements made upon it,

the differences Z
&amp;gt;/,,

Z M2 ,
and Z M

3
are the errors.

An error is denoted by the letter x, and subscripts are applied
to it for particular errors; thus, in the above case, Z M, =xlt

Z M2
= x2 ,

and Z M
3
= xy or, in general, x is the error of

the observation M.

A residual is the difference between the most probable value

of the observed quantity and the measurement upon it. This

most probable value is that deduced by the application of the

Method of Least Squares to the observations
;
for instance, in

the simple case of direct measurements on a single quantity,
the arithmetical mean is the most probable value. The residual

is denoted in general by the letter v. Thus, if z be the most

probable value of an angle derived from the measurements M19

M2 ,
and My the residuals are z M

1
=. v z M2 v2J and

^3 vy Evidently the most probable value, z, will ap

proach more nearly to the true value Z, the greater the number
of observations, as likewise the residuals v to the errors x.

With an infinite number of precise observations, z should coin

cide with Z, and each v with the corresponding x. With a

large number of observations, the differences between the resid-
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uals and the errors will be small, so that the laws governing the

two will be essentially the same. On this account residuals are

often called residual errors, or sometimes even errors.

Principles of Probability.

9. The word &quot;

probability,&quot; as used in mathematical reasoning;
means a number less than unity, which is the ratio of the num
ber of ways in which an event may happen or fail, to the total

number of possible ways ;
each of the ways being supposed

equally likely to occur. Thus, in throwing a coin, there are

two possible cases : either head or tail may turn up, and one is

as likely to occur as the other
;
hence the probability of throw

ing a head is expressed by the fraction
-|,

and the probability of

throwing a tail also by |. So, in throwing a die, there are six

cases equally likely to occur, one of which may be the ace :

hence the probability of throwing the ace in one trial is
J,

and the probability of not throwing it is f .

In general, if an event may happen in a ways, and fail in b

ways, and each of these ways is equally likely to occur, the

probability of its happening is -
&amp;gt;

and the probability of its

failing is . Thus probability is always expressed by an
a -\- b

abstract fraction, and is a numerical measure of the degree of

confidence which one has in the happening or failing of an

event. As this measure may range from o to I, so mental con

fidence may range from impossibility to certainty. If the frac

tion is o, it denotes impossibility ;
if

J,
it denotes that the

chances are equal for and against the happening of the event
;

and if i, the event is certain to occur.

10. Unity is hence the mathematical symbol for certainty.

And, since an event must either happen or not happen, the sum
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of the probabilities of happening and failing is unity. Thus, if

P be the probability that an event will happen, i P is the

probability of its failing. For example, if the probability of

drawing a prize in a lottery is ^Q-Q, the probability of not draw

ing a prize is J ---, a large fraction.

11. When an event may happen in different independent

ways, the probability of its happening is the sum of the separate

probabilities. For if it may happen in a ways, and also in a 1

ways, and there are c total ways, the probability of its occur

rence (by Art. 9) is
a

&quot;*&quot;

a
;
and this is equal to the sum of the

probabilities - and -
,
of happening in the separate independent

ways.

For example, if there be in a bag twenty red, sixteen white,

and fourteen black balls, and one is to be drawn out, the proba

bility that it will be red is
^,

that it will be white is
^,

and

that it will be black is
^. If, however, there be asked the

probability of drawing either a red or black ball, the answer is

20 i 14 __ 34

50 I
50 50

12. A compound event is one produced by the concurrence

of several primary or simple events, each being independent of

the other. For instance, throwing three aces with three dice

in one trial is a compound event produced by the concurrence

of three simple events. An error of observation may be re

garded as a compound event produced by the combination of

all the small independent errors of the numerous accidental

influences.

The probability of the happening of a compound event is

the product of the probabilities of the several primary inde

pendent events. To show this, consider two bags, one of which

contains seven black and nine white balls, and the other four
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black and eleven white balls. The probability of drawing a

black ball from the first bag is ^, and that of drawing one from

the second
^. What, now, is the probability of the compound

event of securing two black balls when drawing from both bags
at once ? Since each ball in the first bag may form a pair with

each one in the second, there are 16 X 15 possible ways of

drawing two balls
; and, since each of the seven black balls may

be associated with each of the four black balls to form a pair,

there are 7X4 cases favorable to drawing two black balls.

The required probability is hence 7^--; and this is equal to

^ X 7-,
or the product of the probabilities of the two primary

independent events.

To discuss the principle more generally, consider two primary

events, the first of which may happen in #, ways, and fail in b
l

ways, and- the second happen in a2 ,
and fail in b2 ways. Then

there are : for the first event a
l + b

l possible cases, and for the

second a^ + b2 ;
and each case out of the a, -f- b

l
cases may be

associated with each case out of the a2 + b2 cases
;
and hence

there. are. for the two events (a, + b,} (a2 + b2]
total cases, each

of which is equally likely to occur. In a,a2 of these cases both

events happen; \u b,b2 both fail; in aA the first happens, and

the second fails
;
and in a2 b, the first fails, and the second hap

pens. Hence (by Art. 9) the probabilities of the compound

events are

Probability that both happen. . . . .
_~

Probability that both fail

Prob. that first happens, and second fails .

2

at -f- t) \a2 ~r &quot;2

a2b v

Prob. that first fails, and second happens .

+b\(a + a
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As each of these probabilities is the product of the proba
bilities of the primary events, the principle is established for

the case of two primary events. And evidently its extension to

three or more is easy.

Thus, if there be four events, and P It P2 ,
P

3 ,
and P

4
be the

respective probabilities of happening, the probability that all

the events will happen is P
s
P2 P3

P
4 ;

and the probability that

all will fail is (i P
t ) (i P2 ) (i P

3 ) (i
- P

4 ).
The prob

ability that the first happens and the other three fail is

P
l (i
- P2 ) (i

- P
3 ) (i

- P
4) ;

and so on.

13. The most probable event among several is that which

has the greatest mathematical probability. Thus, if two coins

be thrown at the same time, there may arise the three follow

ing compound cases, having the respective probabilities as

annexed :

Both may be heads

One head, and the other tail

Both tails

Here the case of one head and the other tail has the greatest

probability, and is hence the most probable of the three com

pound events. The sum of the three probabilities, J, ,
and

|,

is unity ;
as should be the case, since one of these events is

certain to occur.

If four measurements of the length of a line give the values

720.2, 720.3, 720.4, and 720.5 feet, the arithmetical mean,

720.35 feet, is universally recognized as the most probable

value of the length of the line. It will be shown in the sequel

that the mathematical probability of this result is greater than

of any other.

14. A compound event, composed of any number of simple

events, will now be considered. Let P be the probability of
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the happening of an event in one trial, and Q the probability
of its failing, so that T3

-f- g i : and let there be n such

events. Then (by Art. 12) the probability that all will happen
is Pn

; the probability that one assigned event will fail, and

n i happen, is PU ~ 1 Q ; and, since this may occur in ;/ ways,
the probability that one will fail, and n i happen, is nPn ~ l

Q.

Similarly, the probability of two assigned events failing, and

n 2 happening, is Pn ~ 2Q2
; and, since this may be done in

ways,* the probability that two out of the whole

number will fail, and n 2 happen, is - -Pn ~ 2Q2
. If,

then, (P -\- Q)
n be expanded by the binomial formula, thus,

Y = P&quot; + nP*-*Q -f
*(* ~ *V- 2

&amp;lt;2

2 + ...
1.2

1.2.3 m

the first term is the probability that all will happen ;
the second,

that n i will happen, and i fail
;
and the ;;/ + I

th term is the

probability that n m will happen, and m fail. To determine,

then, the most probable case, it is only necessary to find the

term in this series which is greatest.

The particular instance when P = Q = J corresponds to the

case of throwing n coins. Then the series becomes

in which the middle term is the greatest if ;/ be even, and

* See the theory of combinations in any algebra.
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which has two equal middle terms if n be odd. Thus, if n = 6,

the series is

+ 1 + a, + + is..+ A + i.
64

..

64 64 64 64 64 64

Hence, if six coins be thrown, the probabilities of the different

cases are the following :

All heads

Five heads and one tail

Four heads and two tails

Three heads and three tails

Two heads and four tails .

One head and five tails

All tails

-Jf

The sum of these seven probabilities is, of course, unity.

15. The following graphical illustration gives a clear view of

the relative values of the respective probabilities of the seven

cases that may arise in

throwing six coins. A
horizontal straight line

is divided into six equal

parts, and at the points

of division, ordinates are

erected proportional to
&quot; &quot;

the probabilities g
1

^, g
6
4 ,

etc., and through their extremities a curve is drawn. On the

same diagram is shown, by a broken curve, the probabilities of

the nine cases that may arise in throwing eight coins, or the

terms

28 56

Fig, 2,

&quot;&quot;^

70
f f /- f

256 256 256 256 256

which are found by expanding the binomial
(| +
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It is one of the weaknesses of the human mind that large

and small numbers do not convey to it accurate ideas unless

aided by concrete analogy or representation. The above graphi

cal illustration shows more clearly than the numbers them

selves can do the relative probabilities in the two cases. These

curves, moreover, are very similar to a curve hereafter to be

discussed, which represents the law of probability of errors

of observations.

Problems.

16. At the end of each chapter will be given a few questions

and problems. The following will serve to exemplify the above

principles of probability :

1. What is the probability of throwing an ace with a single die in

two trials ? Ans. \\.

2. A bag contains three red, four white, and five black balls. Re

quired the probability of drawing two red balls in two drawings, the ball

first drawn not being replaced before the second trial ?

3. Each student in a class of twenty is likely to solve one problem

out of every eight. What is the probability that a given problem will

be solved in the class ?

4. What is the probability of throwing two aces, and no more, in a

single throw with six dice? What is the probability of throwing at least

two aces?

5. Let a hundred coins be thrown up each second by each of the

inhabitants of earth. How often will a hundred heads be thrown in a

million years?

6. A purse contains nine dimes and a nickel. A second purse con

tains ten dimes. Nine coins are taken from the first purse and put into

the second, and then nine coins are taken from the second and put

into the first. Which purse has the highest probable value ?
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CHAPTER II.

LAW OF PROBABILITY OF ERROR.

17. The probability of an assigned accidental error in a set

of measurements is the ratio of the number of errors of that

magnitude to the total number of errors. It is proposed, in this

chapter, to investigate the relation between the magnitude of

an error and its probability.

Axioms derived from Experience.

18. An analogy often referred to in the Method of Least

Squares is that between bullet-marks on a target and errors of

observations. The marksman answers to an observer
;
the posi

tion of a bullet-mark, to an observation
;
and its distance from

the centre, to an error. If the marksman be skilled, and all

constant errors, like the effect of gravitation, be eliminated in

the sighting of the rifle, it is recognized that t|ie deviations of

the bullet-marks, or errors, are quite regular and symmetrical.

First, it is observed that small errors are more frequent than

large ones
; secondly, that errors on one side are about as

frequent as on the other
; and, thirdly, that very large errors do

not occur. Further : it is recognized, that, the greater the skill

of the marksman, the nearer are the marks to his point of aim.

For instance, in the Report of the Chief of Ordnance for

1878, Appendix S
,
Plate VI, is a record of one thousand shots

fired deliberately (that is, with precision) from a battery-gun, at

a target two hundred yards distant. The target was fifty-two
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feet long by eleven feet high, and the point of aim was its cen

tral horizontal line. All of the shots struck the target ;
there

being few, however, near the upper and lower edges, and nearly

the same number above the central horizontal line as below it.

On the record, horizontal lines are drawn, dividing the target

into eleven equal divisions
;
and a count of the number of shots

in each of these divisions gives the following results :

In top division i shot

In second division 4 shots

In third division 10 shots

In fourth division 89 shots

In fifth division 190 shots

In middle division 212 shots

In seventh division 204 shots

In eighth division. . . . 193 shots

In ninth division 79 shots

In tenth division 16 shots

In bottom division 2 shots

Total 1,000 shots

On Fig. 3 is shown, by means of ordinates, the distribution of

these shots
;
A being the top

division, B the middle, and C

the bottom division. It will be

observed that there is a slight

preponderance of shots below

the centre, and there is reason

to believe that this is due to

a constant error of gravitation

not entirely eliminated in the

T^_ sighting of the gun.

19. The distribution of the

errors or residuals in the case
Fig. 3,

of direct observations is similar to that of the deviations just
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discussed. For instance, in the United States Coast Survey

Report for 1854, p. *9i, are given a hundred measurements of

angles of the primary triangulation in Massachusetts. The

residual errors (Art. 8) found by subtracting each measurement

from the most probable values are distributed as follows :

Between + 6&quot;.o and + 5&quot;.o
i error

Between +5.0 and +4.0 2 errors

Between +4-Q and -f-3-o 2 errors

Between +3.0 and +2.0 3 errors

Between +2.0 and -j-i.o 13 errors

Between -f-i.o and o.o 26 errors

Between o.o and i.o 26 errors

Between i.o and 2.0 17 errors

Between 2.0 and 3.0 8 errors

Between 3.0 and 4.0 2 errors

Total . 100 errors

Here also it is recognized that small errors are more frequent
than large ones, that positive and negative errors are nearly

equal in number, and that very large errors do not occur. In

this case the largest residual error was
5&quot;. 2; but, with a less

precise method of observation, the limits of error would evi^

dently be wider.

20. The axioms derived from experience are, hence, the fol

lowing :

Small errors are more frequent than large ones.

Positive and negative errors are equally frequent.

Very large errors do not occur.

These axioms are the foundation of all the subsequent reasoning.

The Probability Cttrve.

21. In precise observations, then, the probability of a small

error is greater than that of a large one, positive and negative
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errors are equally probable, and the probability of a very large
error is zero. The words

&quot;very large&quot; may seem somewhat

vague when used in general, although in any particular case the

meaning is clear
; thus, with a theodolite reading to seconds, 20&quot;

would be very large, and with a transit reading to minutes,

5 would be very large. Really, in every class of measure

ments there is a limit, /, such that all the positive errors are

included between o and + /, and all the negative ones between

o and /.

22. Hence the probability of an error is a function of that

error
;
so that, calling x any error and y its probability, the law

of probability of error is represented by an equation

* -/(*&amp;gt;,

and will be determined, if the form of f(x) can be found. If,

then, y be taken as an ordinate, and x as an abscissa, this may
be regarded as the equation of a curve which must be of a form

to agree with the three fundamental axioms
; namely, its maxi

mum ordinate OA must correspond to the error zero
;

it must

be symmetrical with respect to the axis of F, since positive and

negative errors of equal magnitude are equally probable ;
as x

increases numerically, the value of y must decrease, and, when

x becomes very large, y must be zero. Fig. 4 represents such

a curve, OP and OM being errors, and PB and MC their re

spective probabilities. Further : since different measurements

have different degrees of accuracy, each class of observations

will have a distinct curve of its own.

The curve represented in Fig. 4 is called the probability curve.

In order to determine its equation, it is necessary to consider

y as a continuous function of x. This is evidently perfectly

allowable
; since, as the precision of observations is increased,

the successive values of x are separated by smaller and smaller

intervals. The requirement of the third axiom, that y must be
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zero for all values of x greater than the limit /, is apparently
an embarrassing one, as it is impossible to determine a continu

ous function of x which shall become zero for x ==. / and also

be zero for all values of x from / to 00. But, since this

limit / can never be accurately assigned, it will be best to extend

the limits to &amp;lt;x&amp;gt;

, and determine the curve in such a way thrt

M F O

Fig. 4,

P M

the value of y, although not zero for large values of x, will be so

very small as to be practically inappreciable. The equation of

the probability curve will be the mathematical expression of the

law of probability of errors of observation. Two deductions of

this law will be given ;
the first that of Hagen, and the second

that of Gauss.

First Deduction of the Law of Error.

23. Hagen s demonstration rests on the following hypothesis
or axiom, derived from experience :

An error is the algebraic sum of an indefinitely great number
of small elementary errors which are all equal, and each of which

is equally likely to be positive or negative.

To illustrate : suppose that, by several observations with a

levelling instrument and rod, the difference in elevation between
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two points has been determined. This value is greater or less

than the true difference of level by a small error, x. This error

x is the result of numerous causes acting at every observation :

the instrument is not perfectly level, the wind shakes it, the

sun s heat expands one side of it, the level-bubbles are not accu

rately made, the glass gives an indistinct definition, the tripod

is not firm, the eye of the observer is not in perfect order, there

is irregular refraction of the atmosphere, the man at the rod

does not hold it vertical, the turning-points are not always good

ones, the graduation of the rod is poor, the target is not prop

erly clamped, the rod-man errs in taking the reading, and many
others. Again : each of these causes may be subdivided into

others
;
for instance, the error in reading the rod may be due,

perhaps, to the accumulated result of hundreds of little causes.

The total error, x, may hence be fairly regarded as resulting

from the combination of an indefinitely great number of small

elementary errors
;
and no reason can be assigned why one of

these should be more likely to be positive than negative, or

negative than positive.

24. Now, it is evident that it is more probable that the

number of positive elementary errors should be approximately

equal to the number of negative ones than that either should be

markedly in excess, and that the probability of the elementary

errors being either all positive or all negative is exceedingly

small. In the first case the actual error is small, and in the

second large ;
and so the probabilities of small errors are the

greatest, and the probability of a very large error is practically

zero. These correspond to the properties which the proba

bility curve must possess.

Let A* represent the magnitude of an elementary error, and

m the number of those errors. The probability that any A.*

will be positive is
,
and that it will be negative is also

\.
The

probability that all of the m elementary errors will be positive
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is hence (\)
m

;
the probability that m I will be positive and

i negative is m(z)
m l

(\Y &amp;gt;

an^ the probabilities of all the re

spective cases will be given by the corresponding terms of the

binomial formula (Art. 14). When all of the m elementary
errors are positive, the resulting error of observation is -f- m.^x ;

when ;;/ I are positive and I negative, the resulting error is

-j- (m i)A;r kx, or -f- (;;/ 2)&x. If m n elementary
errors are positive and the remaining n are negative, the result

ing error is -f- (m n)kx n.&x, or -f- (m 2;/)A;r, and the

probability of this particular combination is given by the

n + I
th term of the expansion of the binomial (\-{-^)

m
. It is

easy then to write the following table :

Elementary Errors A*.
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is the differential equation of the curve. To deduce, then, the

law of probability of error, it is only necessary to find
y-y-

-^7
oc oc

in terms of y and x, pass to the limit, place it equal to
y-,

and

perform the integration.

If x 1 be taken as the error next less in magnitude to x, the

y-y
difference x x equals 2A#, and the value of -

? is the
x x

dy
limit -r- if the curve is to be continuous.

dx

Fig.5.

26. For the two consecutive errors x and x take (from Art.

24) the two general values

x = (m 2w)Ax, and x = (m in 2)A*.

The ratio of the probabilities of these errors is

y __ m n

y
~~~~

n+ i

which, after inserting for n its value in terms of x, m, and A#,

may be put into the form

2\&X X) 2X
i
\

y y (M* i /^A-V % wi \ic.
c
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Here &x in the numerator vanishes in comparison with x. In

the denominator, 2 vanishes compared with m, and m&x is the

maximum positive error, which is so large that x vanishes in

comparison with it. The differential equation, then, is

dy y y y%
doc

=

or

in which 2h2 has been written to represent the quantity ,

-
The integration of this equation gives

\ogy= h 2x2 + k
,

which k is the constant of integration, and the logarithm
in the Napierian system. By passing from logarithms to

in

is in

numbers

y e
~k2x2 + k = e

~hZxZ e*
,

in which e is the base of the Napierian system. Since d* is a

constant, this may be written

(0 y=kc-*t

and this is the equation of the probability curve, or the equa
tion expressing the law of probability of errors of observation.

This equation satisfies the conditions imposed in Art. 22,
for y is a maximum when x is o; it is symmetrical with respect
to the axis of F, since equal positive and negative values of x

give equal values of y, and when x becomes very large, y is

very small. The constants k and h will be particularly consid
ered hereafter.
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Second Deduction of the Law of Error.

27. Gauss s demonstration is based on the following hypoth
esis or axiom, established by experience :

The most probable value of a quantity which is observed

directly several times, with equal care, is the arithmetical mean
of the measurements.

The average or arithmetical mean has always been accepted
and used as the best rule for combining direct observations of

equal precision upon one and the same quantity. This universal

acceptance may be regarded as sufficient to justify the axiom
that it gives the most probable value, the words &quot;most prob
able&quot; being used in the sense of Art. 13; for after all, as

Laplace has said, the theory of probability is nothing but com
mon sense reduced to calculation. .If the measurements be but
two in number, the arithmetical mean is undoubtedly the most

probable value
; and, for a greater number, mankind, from the

remotest antiquity, has been accustomed to regard it as such.

It is a characteristic of the arithmetical mean that it renders

the algebraic sum of the residual errors zero. To show this, let

Miy M2 . . . Mm be n measurements of a quantity ; then the

arithmetical mean of these is,

M
t 4- M2 -f M, + . . . -f Mn

This equation may be written

nz = M, + M2 + J/
3 + . . . + MH9

which by transposition becomes

(z
-

M&amp;gt;) + (z
- M2 ) + (z

- M
3 ) + . . . 4- (*

- Mn )
= o;

that is to say, the arithmetical mean requires that the algebraic
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sum of the residual errors shall be zero. To take a numerical

illustration, let 730.4, 730.5, and 730.9 be three measure

ments of the length of a line. The arithmetical mean is 730.6,

giving the residuals -f-o.2, +0.1, and 0.3, whose algebraic

sum is o

28. Consider the general case of indirect observations, in

which it is required to find the most probable values of quanti

ties Ly measurements on functions of those quantities. For

simplicity, only two quantities, z^ and z will be considered;

although the reasoning is general, and applies to any number.

Let n observations be made on functions of #
t
and z2 ,

from which

it is required to find the most probable values of s, and zv The

differences between the observations and the corresponding true

values of the functions are errors ,rn x2 . . . xm each of which is

also a function of z
l and sv The probabilities of these errors are

y*. =/C*i), y2 =/(*2&amp;gt;
- -y* =/(*)

And by Art. 12 the probability of committing the given system
of errors is

Applying logarithms to this expression, it becomes

log P = log/to) + log/C*2 ) + . . . + log/(O.

Now, the most probable values of the unknown quantities z
l

and ^2 are those which render P a maximum (Art. 13), .and

hence the derivative of P with respect to each of these variables

must be equal to zero. Indicating the differentiation, the follow

ing equations result :

dP df(^ df(x^ df(Xn}
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Since in general df(x) = $(x)f(x)dxy these may be written

dx2 , , x dxn
-T2 +.,..-=+ (**)~T = O,
dzt dZi

and, being as many in number as there are unknown quantities,

they will determine the values of those unknown quantities as

soon as the form of the function &amp;lt; is known.

Since these equations are general, and applicable to any num
ber of unknown quantities, the form of the function

&amp;lt;/&amp;gt; may be

determined from any special but known case. Such is that in

which there is but one unknown quantity, and the observations

are taken directly upon that quantity. Thus, if there be only

the quantity z, and the measurements give for it the values

Mlt M2 . . . MM the errors are,

&quot;x l
z Mt) x2

= z M2 . . . xn = z Mn,

from which

dx l dxz _ _ dxn __

dz dz dz

and the first equation above becomes

In this case, also, the arithmetical mean is the most probable

value, and the algebraic sum of the residuals will be zero, or, if

v denote any residual in general,

z&amp;gt;i + ^2 + z&amp;gt;

3 -f . . . -\- vn = o.

Now, if the number of observations, n, is very large, the resid

uals v will coincide with the errors x (Art. 8), and

X X . .. X = O.
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This equation can only agree with that above when
&amp;lt;f&amp;gt; signifies

multiplication by a constant, or when

&amp;lt;j&amp;gt;(x
t ) + &amp;lt;l&amp;gt;(x

2 ) + . . . 4- &amp;lt;t&amp;gt;(x,t )
= ex, + cx2 + 4- cxn .

Replacing in this the values of
/&amp;gt;(*,), &amp;lt;(r2 ), etc., it becomes

df(Xl ) f(x^ .

and, since this is true whatever be the number of observations,

the corresponding terms in the two members are equal. Hence,

if x be any error, and/ =/(*),

df(x) dy

f(x}dx ydx
= ex.

Multiplying both members by dx, and integrating,

log y = Y + ^

Passing from logarithms to numbers,

y = e**z
ek .

Here the constant c must be essentially negative, sinpe the

probability y should decrease as x increases numerically ; repla

cing it, then, by 2//
2

,
and also putting e

k
,
there results

(i) y^ ke-**,

which is the equation of the probability curve, or the equation

expressing the law of probability of errors of observation.

Discussion of the Curve y = ke

29. Since positive and negative values of x numerically equal

give equal values of y, the curve is symmetrical with respect to

the axis of Y. The maximum value of y is for x = o, when
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y = k; k is, hence, the probability of the error o. As x in-

creases numerically, y decreases
;
and when x = oo, y becomes o.

The value of the first derivative is

dx

which becomes zero when x = o and when x = oo, indicating
that the curve is horizontal over the origin, and that the axis of

x is an asymptote. The value of the second derivative is

which becomes o when 2h 2x2 + i = o, indicating that the

curve has an inflection-point when x = -

//V2*

To show further the form of the curve, the following values

have been computed, taking k and h each as unity :

&amp;gt;-
--
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The curve in Fig. 4 is constructed from these values, the ver

tical scale being double the horizontal. C is the inflection-

point, whose abscissa OM is 0.707.

30. The constant // is a quantity of the same kind as -, since

the exponent Jfx* must be an abstract number. Methods will

be hereafter explained by which its value may be determined

for given observations. The probability of an assigned error xr

decreases as h increases
;
and hence, the more precise the ob

servations, the greater is //. For this reason // may be called
&quot; the measure of precision.&quot;

The constant k is an abstract number
; and, since it is the

probability of the error o, it is larger for good observations than

for poor ones. The more precise the measurements, the larger

The Probability Integral.

31. To determine the value of the constant k, and also to

investigate the probability of an error falling between assigned

limits, the following reasoning may be employed :

Let x
,
x iy x2 . . . x be a series of errors, x

1

being the smallest,

x
l
the next following, and x the last

;
the differences between

the successive values being equal, and x being any error.

Then, by Art. H, the probability of committing one of these

errors, that is, the probability of committing an error lying
between xr and x, is the sum of the separate probabilities
ke~ h2x/2

t
ke~ h

**?, etc.
; or, if P denote this sum,

which may be written

P
=&*&amp;gt;&amp;lt;-*,

the notation 2/ denoting summation from x9
to x inclusive.
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To replace the sign of summation by that of integration, dx

must be the interval between the successive values of the

errors, and then the probability that an error will lie between

any two limits x and x is

P
/&amp;gt; / v=\dx J.r

Now, it is certain that the error will lie between oo and + oo,

and, as unity is the symbol for certainty,

= f
dxJ-

The value of the definite integral in this expression is .*

Hence

_1 &quot;

hdof

* The following method of determining this integral is nearly that presented by
Sturm in his Cours d Analyse, Paris, 1857, vol. ii. p. 16.

The integral fe~
fl2x

^

dx expresses the area between the probability curve and

the axis of X, and, since the curve is symmetrical to the axis of F, that integral

between the limits oo and -f- oo will be equal to double the integral between the

limits o and + oo . Placing also hx f,

and the integral in the second member is to be determined.

Take three co-ordinate rectangular axes OT, OU, and OV, and change / into ,

then

A =
J e~~

*2dt area between curve F/7&quot;and axes,

A I e
~ uZdu = area between curve Kd/and axes.

/o

and A 2 =
&quot;

e
~

*2
~
**dtdu.
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from which the value of k is

_hdxK - ;

yV

The equation of the probability curve now becomes

(2) y = hdxTT-te-v*2

,

and the probability that an error lies between any two given

limits x and x becomes

Equations (i), (2), and (3) are the fundamental ones in the

theory of accidental errors of observation.

32. The probability that an error lies between the limits x

and -4- x is double the probability that it lies between the limits

o and + x, on account of the symmetry of the curve. Hence

(4) P=

Now v = e tz is the equation of the curve VtT, and v e
2

is the equation

of VuU, and, if either of these curves revolves about the axis of F, it generates a

surface whose equation is v = e~ t2 -u2
. Hence the double integral A 2

is one-

fourth of the volume included between that surface and the horizontal plane. If a

series of cylinders concentric with the axis V form the volume, the area of the ring

included between two whose radii are r and r + dr is 2nrdr, and the corresponding

height is v = e P - u2
e
~ ^2

. Hence one-fourth of the volume is

which, sinceJ e
~ r*2rdr = e rz

,
is equal to . Therefore

and hence, finally,

/
+ o 2 /oo i/

e
- tex*dx = -7 / *- *dt = .

hJo h
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expresses the probability that an error is numerically less than

x. This may be written in the form

(4)

and is called the probability integral.

As the number of errors of the magnitude x is proportional

to the probability y, and as P in equation (4) is merely the

summation of the probabilities of all errors between x and

-f- x, the number of errors between these limits is also pro

portional to P. Now, P is the area of the probability curve

between the limits x and + x, the whole area being unity.

Hence the number of errors between two assigned limits ought

to bear the same ratio to the whole number of errors as the

value of P between these limits does to unity.

By the usual methods of the integral calculus the value of

the probability integral corresponding to successive numerical

values of lix may be computed.* A table of these values is

given at the end of this volume (Table I.).

* First put hoc = t, then ^.e-Pdt
is the integral to be evaluated. By devel

oping e~t2 into a series by Maclaurin s formula, the following results :

.vhich is convenient for small values of /. For large values integrate by parts, thus
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To illustrate the use of this table, consider the case of

/for 1.24, for which P = 0.9205. Here 0.9205 is the proba

bility that an error will be numerically less than -^ -
; or, in

other words, if there be 10,000 observations, it is to be expect

ed that in 9,205 of them the errors would lie between ^

and -) ,
and in the remaining 795 outside of these limits.

h

Comparison of Theory and Experience.

33. By means of Table I the theory employed in the deduc

tions of equations (i), (2), (3), and (4) may be tested. To use

the table it is necessary to know the value of the constant //.

Granting for the present that it may be determined, the fol

lowing examples will exemplify the accordance of theory and

experience.

For the one hundred residual errors discussed in Art. 19, the

value of h may be determined to be -.

2 .236

And since
j

e ~t2dt =
,
as shown in the preceding footnote,

- =
IT -/-&quot;&amp;lt;*

From these two series the values of P can be found to any required degree of

accuracy for all values of t or hx.
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for x = i&quot;.o
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theoretical distribution required by equations (2) and (4). The

following is a comparison by Bessel of the errors of three hun-

dred observations of the right ascensions of stars :

Limits-
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length. In the latter, dx for any special case is the interval

between successive values of x. For instance, if observations

of an angle be carried to tenths of seconds, dx is o&quot;. I
;

if to

hundredths of seconds, dx is o&quot;.oi
;
and if a continuous curve

is considered, dx is the differential of x. As y is an abstract

number, h.dx must likewise be abstract, and hence // must be a

quantity of the same kind as . The probability of the error

o is - &quot;-

;
thus in measuring angles to hundredths of seconds,

\/rr

the probability that an error is
o&quot;.cx|&amp;gt;

is - 1^ . As this in

creases with //, the value of // may be regarded as a measure of

the precision of the observations. Methods of determining k

are given in Chap. IV.

36. The two probability integrals,

h

are identical, except in their limits. The first gives the proba

bility that an error will lie between any two limits x and x ; and

the second, the probability that it lies between the limits x

and _|_ ^ or that it is numerically less than x. The second is

then a particular case of the first. Table I refers only to (4) ;

and from it by simple addition or subtraction the probability

can be found for any two assigned limits. For example, the

probability that an error lies between 2&quot;.o and + 4&quot;.o
is the

sum of the probabilities for the limits o&quot;.o to 2&quot;

f

.o and o&quot;.o to

4&quot;.o ;
and the probability that an error is between + 2 &quot;- an&amp;lt;^

+ 4&quot;.o
is the difference of the probabilities of those limits.

The integral P is simply the summation of the val :es of y
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between the assigned limits, or P = 2j ,
as required by the

principle of Art. 1 1 to express the probability of an error lying

between those limits.

37. Problems and Queries.

1. Can cases be imagined where positive and negative errors are not

equally probable ?

2. An angle is measured to tenths of seconds by two observers, and

the value of h for the first observer is double that for the second. Draw

the two curves of probability of error.

3. Show that the arithmetical mean of two measurements is the only

value that can be logically chosen to represent the quantity.

4. The reciprocal of h for the bullet-marks in Art. 18 is 2.33 feet.

Compare the actual distribution of errors with the theoretical.

5. Draw a curve for each of the equations jy
= ke~*2 and y = ke~*xZ

,

assuming a convenient value for k. Show that the value of k should

have been taken different in the two equations.

6. Explain how the value of TT might be determined by experiments
with the help of equation (2).
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CHAPTER IIL

THE ADJUSTMENT OF OBSERVATIONS.

38. The Method of Least Squares comprises two tolerably
distinct divisions. The first is the adjustment of observations,
or the determination of the most probable values of observed

quantities. The second is the investigation of the precision of

the observations and of the adjusted results. This chapter
contains the development of the rules and methods relating to

the first division.

Weights of Observations.

39. Weights are numbers expressing the relative practical
worth or value of observations. Thus, suppose a line to be
measured twenty times with the same chain, ten measurements

giving 934.2 feet, eight giving 934.0 feet, and two giving 934.6
feet

;
then the numbers 10, 8, and 2 are the weights of the

respective observations 934.2, 934.0, and 934.6 feet. Or, since

weights express only relative worth, the numbers 5, 4, and i, or

any other numbers proportional to 10, 8, and 2, may be taken

as the weights. The observation 934.2 has cost five times as

much as the observation 934.6, and for combination with other

measurements it should be worth five times as much.

The weight of an observation expresses the number of stand

ard observations of which it is the equivalent. Thus the aver-

age of n equally good direct measurements has a weight of n
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the weight of each single measurement being unity. And

any observation having a weight of /
*
may be regarded as the

equivalent of / observations of the weight unity, and as having
a practical worth or value/ times that of a single one. Hence

the use of weights may be considered as a convenient method

of abbreviation. Thus &quot;934.2 with a weight of 10&quot; expresses
the same as the number 934.2 written down ten times, and

regarded each time as a single observation.

40. A weighted observation is an observation multiplied by
its weight. Thus if Mlt M2 . . . MH represent observations, and

A&amp;gt; p2 Pn their respective weights, the products p t
Mlt p2M2

. . .pMH represent weighted observations. If ,rn x2 . . . xn are

the errors corresponding to Miy M2 . . . Mm the products /,.*

p2x1 . . . pnxn may be called weighted errors. As an error x is

the difference between the true and measured value of the

quantity observed, the product px cannot occur without implying
that the corresponding observation M has a weight of /, and
the same is true for the residual error v. Thus if there be two
unknown quantities .#, and s2t and a measurement M be made

upon f(z lt z2), the residual error is

v=f(z 1,z2 ) -M
if z

l
and z2 denote the most probable values of the unknown

quantities. Now, if the observation M be weighted with /, the

residual is

pv = #./(z L,z2 ) -pM.

Hence a weighted observation always implies a weighted re

sidual, and vice versa.

The weights should be carefully distinguished from the meas
ures of precision introduced in the last chapter. The former

* p is the initial of &quot;

pondus.&quot;
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are relative abstract numbers, usually so selected as to be free

from fractions, while the latter are absolute quantities. The
relation between them will be shown in Art. 43.

The Principle of Least Squares.

41. The principle from which the term &quot;Least Squares&quot;

arises is the following :

In measurements of equal precision the most probable values
of observed quantities are those that render the sum of the

squares of the residual errors a minimum.

To prove this, consider the general case of indirect observa

tions, and let ;/ equally good measurements be made upon func

tions of two unknown quantities z
l
and z2 . Let Mlt M2 . . . Mn

be the results of the measurements of the functions /,(#!, z2),

f2 (Zi, z2 ) -fn(Zi, 2 )- These measurements will not give ex

actly the true values of the functions, and the difference between
the observed and true values will be small errors, xlt x2 . . . xn ,

or

fi (ZD Z2) MI X lf J 2 (Zi, Z2 )
M2

= X2 . . tfn (JSit
Z2 ) Mn = Xn .

The respective probabilities of these errors are by the fun

damental law (i)

y i
:=- Kc *

, y2
^^ KC a

. . . y?i KC ~ n
y

h being the same in all, since the observations are of equal

precision. Now, by Art. 12, the probability of the compound
event of committing the system of independent errors xiy xt

. . . xn is the product of these separate probabilities, or

Each of these errors is a function of the quantities z t and z

vhich are to be determined. Different values of z, and zt will
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give different values for P 1

. The most probable system of

errors will be that for which P is a maximum (Art. 13), and

the most probable values of
,
and z2 will correspond to the

most probable system of errors. The probability P will be a

maximum when the exponent of e is a maximum
;
that is when

#i
2
4- -*2

2 + *1

3
2 + . . . + xn

z a minimum.

Hence the most probable system of values for z
l
and zt is that

which renders the sum x? + x* -\~ x* -\- . . . + xn a minimum,
and the fundamental principle of Least Squares is thus proved.

The errors xlt x2 . . . xn have been thus far regarded as the

true errors of the observations. As soon, however, as they are

required to satisfy the condition that the sum of their squares
is a minimum, they become residual errors (Art. 8), so that the

condition for the most probable values of 2
l
and z2 is really

(5) ?; i

2
4- z;

2
2
H- ^

3

2 + + ^ 2 = ^ minimum
;

that is to say, if z
t
and zz be the most probable values, the com

puted residuals

/(si, 22 ) M, = v lt /2 (,,02 ) Ma = v2 . . .fn (z lt z2 ) M= vn

will be those that satisfy the condition for a minimum.

The above reasoning evidently applies to any number of

unknown quantities as well as to two.

42. The more general case of the Method of Least Squares,

however, is that when the observations have different degrees
of precision, or different weights. In that event the general

principle is the following :

In measurements of unequal weight the most probable values

of observed quantities are those that render the sum of the

weighted squares of the residual errors a minimum.
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As before, let ;/ observations, Miy M2 . . . Mn ,
be made upon

functions of two unknown quantities, ^ and z2 ; and let /,,

p2 . . . pn be the respective weights of Mlt M2 . . . Mn . The
differences between the observations and the true values of

the functions are errors, xlt x2 . . . xn ;
and the respective

probabilities of these errors are

in which k and h are different for each observation. The prob

ability of the system of independent errors, xlt x2 . . . xn , then, is

JT /vj/v2&quot;-/^
* * 1 2 2 n n /

^

and the most probable system of values is that for which P is

a maximum, or that which renders

hfx? 4 h 2
2
X2

2
4- ... 4- h,?xfl

2 = a minimum.

The values of x lt x2 . . . xw derived from this condition, are the

residual errors, v lt v2 . . . vn ;
so that it will be well to write at

once

/ii
2
Vi

2
4- h 2

2v2
2 + . . . 4- hj

2vt? = a minimum.

This expression may be divided by h 2
; h being a constant

standard measure of precision so selected, that

h 2 = pji
2

,
h 2 - p2h

2
. . . h,

2 = pnh
2
,

where / p2 . . . pn are whole numbers, which are the weights

of the observations Mlt M2 . . . Mn
* Then it becomes

(6) pip? -\- p^v
2
4- ... -\-pnV,? = a minimum ;

* To show that these numbers are the weights of Aflt M2 . . . Mn ,
consider that

the condition for the minimum will be fulfilled when

civ* dv~ dvn

-.^
+ /;&amp;gt;2

_ + . . . + 4.H-. ^ = O,
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which is the principle that was to be proved. The term
&quot;

weighted square&quot; means simply v2

multiplied by the weight

/, or the product pv
2

.

The conditions expressed by (5) and (6) are the fundamental

ones for the establishment of the practical rules for the adjust

ment of independent observations. If the observations are of

equal weight, the general condition (6) reduces to the special

one (5).

43. It is here seen that the squares of the measures of pre
cision of observations are proportional to the weights, or that

(7) /^
2

:/&amp;gt; 2
2

:/&amp;lt;

2

::A :A :/.

The measure of precision is never used in the practical ap

plication of the Method of Least Squares, while weights are

constantly employed. The quantity //, however, is very con

venient in the theoretical discussions, and will be needed often

in the next chapter : h represents an absolute quantity, while /
denotes always an abstract number.

Direct Observations on a Single Quantity.

44. When the observations are of equal precision, and made

directly on the quantity whose value is sought, it is universally

recognized that the arithmetical mean is the most probable

which, after dividing by the standard h z
, become

&amp;lt;* i &amp;lt;fr dv

dv^ dvz dvn
A** 7h2

+
A&quot;a ^;

+ + PHVH 5-
= o.

Here the residual r/ x is repeated p l times, v2 is repeated /2 times, and vn is repeated

pn times, and hence pv / 2 . . ./ are the weights of the corresponding observations

Afv M2 . . . Mn (Art. 40).
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value of the quantity. This may be also shown from the funda

mental principle of Least Squares in the following manner :

Let Mt) M2 . . . Mn denote the direct observations which are

all of equal weight or precision. Let z be the most probable
value which is to be determined. Then the residual errors are

2 M^ z M2 . . . z MMt

and from the fundamental principle (5)

(z
- M,Y + (z

- M2y + . . . + (z
- Mny = a minimum.

To apply the usual method for maxima and minima, place the

first derivative of this expression equal to zero, thus

2(Z- Mt ) + 2(Z-M2 ) + ... + 2(z-Mn )
= O.

Dividing this by 2, and solving for z, gives

_

that is, the most probable value z is the arithmetical mean of

the ;/ observations.

The adjustment of direct observations of equal weight on

the same quantity is hence effected by taking the arithmetical

mean of the observations.

45. When the measurements of a quantity are of unequal

weight or precision, the arithmetical mean does not apply.

Here the more general principle (6) will furnish the proper rule

to employ. Let the measurements be Mlt M2 . . . MM, having
the weights/,, p2 . . . pn . Then, if z be the most probable value

of the observed quantity, the expression (6) becomes

p\z - M,)
2 +p2 (z

- M2 )
2 + . . . + pn(z

- Mn)
2 = a minimum.
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Placing the first derivative of this equal to zero gives

/,(*
- M,) +M2 - M2 ) + . . . + pn(z-Mn )

= o,

the solution of which is

_ p,Mt +p2M2 + . . . +pnMH .

( Q ) ^ ~
&amp;gt;w A +A + ...+/*

that is, the most probable value of the unknown quantity z is

obtained by multiplying each observation by its weight, and

dividing the sum of the products by the sum of the weights.

In order to distinguish this process from that of the arithmeti

cal mean, it is sometimes called the general mean, or the

weighted mean.

Granting that the arithmetical mean gives the most probable

value for observations of equal weight, the general mean (9)

for observations of unequal weight may be readily deduced from

the definitions of the word weight
&quot;

in Art. 39.

The adjustment of direct observations of unequal weight on

the same quantity is hence effected by taking the general mean
of the observations.

Independent Observations of Equal Weight.

46. The general case of independent observations comprises
several unknown quantities whose values are to be determined

from either direct or indirect measurements made upon them.

An &quot;observation equation&quot; is an equation connecting the

observation with the quantities sought. Thus, if M be a meas

urement of /(# z2),
the equation M =.f(z z^ is an observation

equation. The number of these equations is the same as the

number of observations, and generally greater than the number
of unknown quantities to be determined. Hence, in general,
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no system of values can be found which will exactly satisfy the
observation equations. They may, however, be approximately
satisfied by many systems of values

;
and the problem is to deter

mine that system which is the most probable, or which has the
maximum probability (Art. 13).

P--...J
Flf 5 T illustrate

&amp;gt;

consider the following practi-

.......z,
cal case. Let O represent a given bench-

:l

.-&quot;&quot;&quot;&quot; /

mark
&amp;gt;

and Z Z2 ,
Z

3 , three points whose

..-&quot;&quot;* f
elevations above O are to be determined.

*
2

&quot;4

^ Let five lines of levels be run between
2

3 these points, giving the following results :

Observation i. Z, above O 10 feet.

Observation 2. Z2 above Z, = 7 feet.

Observation 3. Z2 above O = 18 feet.

Observation 4. Z2 above Z
3
= 9 feet.

Observation 5. Z
3
below Z

t
= 2 feet.

If the elevations of the points Zlf Z2 , and Z
3 ,
be designated

by s
l
z2 , and zy the following observation equations may be

written :

z, = 10,

z2 z
l
=

7,

z2 = 1 8,

each one of which is an approximation to the truth, but all of

which cannot be correct. The number of these equations is

five, the number of the unknown quantities is three; and hence
an exact solution cannot be made. The problem is to find the

most probable values of z lt zzt and zy

The observation equations may be algebraic expressions of

the first, second, or higher degrees ;
or they may contain circular

or logarithmic functions. Usually, however, they are of the

first degree, or linear, and these alone will be considered in the
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/S*7

body of this work. In Art. T^e is given a method by which

non-linear equations, should they occur, may always be reduced

to linear ones.

47. Consider first the case of observations of equal precision

or of equal weight. Let there be q unknown quantities #

z2 . . . z
q ,
and let the equations between them and the measured

quantities be of the form

f, + Ah + . . . + lzq
= M,

in which a, b . . . / are constants given by theory and absolutely

known, and M the measured quantity. For each observation,

there will be a similar equation, and, in all, the following n

approximate observation equations :

a,z, + b,z2 + ...+1^= M,,

a2z, + b2z2 + . . . + I2zg
= M2 ,

a
1
z

l -f b^ -f . . . + l,Zg
= J/

3 ,

anz L 4- bnz2 4- . . . 4- fag = Mu ,

the first of which arises from the first observation, the second

from the second, and the last from the ;^
th

.

Now, as the number of these observation equations is greater

than that of the unknown quantities, they will not be exactly

satisfied for any system of values that may be deduced. The

best that can be done is to find, from the fundamental principle

of Least Squares, the most probable system. Let # z2 . . . zq

denote the most probable values, then, if these be substituted

in the observation equations, they will not reduce exactly to

zero, but leave small residuals, v lt v2 . . . vn ;
thus strictly

0r&i + &amp;lt;M2 -f- . . . 4- l^q
- M, = v lt

a2z l 4- b2z2 4- . . . 4- I2zg M2
= v2 ,

a?i + bnz2 -f . . . 4- lnzg Mn = vn.
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The fundamental principle established in Art. 41 is, that the

most probable values, z lt z2 . . . z
q)

are those that render

z\
2 + z&amp;gt;2

2 + ^
3

2
-f- . -f vn

2 a minimum.

Consider first what is the most probable value of the un
known quantity z lf and denote the terms in the above equa
tions independent of z

t by the letters Nlt N2) Ny etc. Then

they become

a,z, -f N, = v lt

a2z l + N2
= v2 ,

anz, + Nn vn .

Squaring both terms of each of these equations, and adding the

results, gives

(a t
z

s + JVi)*+ (a 2z,+ N2)*+ ... + (anz, + N,fr= v? +^ + . . . + vn\

In order to make this sum a minimum, its first derivative must
be put equal to zero, giving

Ci(a^ +1V1 ) + a 2 (a2z, + N2 ) + . . . + an (anz, + Nn )
= o

;

and this is the condition for the most probable value of z
lt In

like manner a similar condition may be found for each of the

other unknown quantities. The number of these conditions,

or &quot;normal equations&quot; as they are called, will be the same as

that of the unknown quantities, and their solution will furnish

the most probable values of z z2 . . . z
q

.

48. The following is, hence, the method for the adjustment
of independent indirect observations of equal weight :

For each observation write an observation equation. Form
a normal equation for 2

l by multiplying each of the observation

equations by the co-efficient of z
t
in that equation, and adding
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the results. And, for each unknown quantity, form a normal

equation by multiplying each observation equation by the co

efficient of that unknown quantity in that equation, and adding
the results. The solution of these normal equations will fur

nish the most probable values of the unknown quantities.

For example, let the five observation equations derived

from the five observations of Art. 46 be considered, namely,

s
x

=
10,

Si + 22
=

7

z2 = 1 8,

^2 z
3
= 9

*,
- *3 = 2.

To form the normal equation for z
l
the first observation

equation is multiplied by -|- I, the second by I, the third by
o, the fourth by o, and the fifth by + I

;
the addition of the

products then gives

3*1
-

2
- *

3
=

5.

The normal equation for z2 is formed by multiplying the first

observation equation by o, the second by -|- I, the third by -|- I,

the fourth by -|- I, and the fifth by o
;
the sum of the products

being

z l + 3*2 % = 34.

The normal equation for #
3

is formed by multiplying the first,

second, and third observation equations by o, and the fourth

and fifth by I, the addition of which gives

Zi z2 -\r 2
3
= n.

These three normal equations contain three unknown quanti

ties, and their solution gives
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which are the most probable values that can be obtained from
the five observations. If now these values be substituted in

the observation equations there will be found the five residuals,

and the sum of the squares of these is
f. Of all the possible

values that might be assigned to xrn z2 ,
zy those above found

give the minimum sum of squares of residual errors.

As a second example, let three observations on the two

quantities z^ and z2 give the observation equations

3* ~ 5*2
= + 12.4,

2Zi + 4^2 = 10.2,

Zj, 2Z2 -f 8.0.

To form the normal equation for 2
l
the observation equations

are multiplied by + 3, 2, and + I, respectively, and the re

sults added. To form the normal equation for z2 the multipliers
are 5, +4, and 2, respectively. The two normal equa
tions thus are

I4Zt 2$Z2 = -J- 65.6,

25^ + 45*2
= 118.8,

and the solution of these gives the most probable values

js
1
= 3.60 and z2

= 4.64.

49. In order to put the above method for the formation of

normal equations into algebraic language, let there be n obser

vations upon q unknown quantities which lead to the following
observation equations :

aiZi -f biZ2 + C& + . . . -f hzq
= Mlf

(10)
a*Zl &quot;*&quot;

te + C^ + + 4f Ma ,

lnzq
= Mn
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The normal equation for z
l

is formed by multiplying the first

of these by alt the second by a2 ,
the last by an ,

and adding the

products, thus giving

(a,
2 + a*

2 + . . . + tfw
2

)*i + (aji + a2b2 -f . . . + a nb^z2 -f . . .

and in like manner a normal equation for each of the other

unknown quantities may be written. To simplify the expres

sion of these equations, let the following abbreviations for

summation be introduced :

[aa] =a* + a2
2 + a? +... + **,

\ab\ aA + a^2 -f

\al\
= aji + a 2l2 +

= ^z^x + #2-^/2 + ^3^/3 + . . . -h anMn ,

and then the normal equations may be thus written:

[aa]z, + \a.b\z, + [^]ar3 + . . . + \_at\zq
= [^

[^]^ +
(11) \ca\z, -f

\la\zi +

The co-efficients of the unknown quantities in these normal

equations present a curious symmetry ;
those of the first hori

zontal row being the same as those of the first vertical column,

those of the second row the same as those of the second col

umn, and so on. This is due to the fact that [ba] is the same

as [aft], [ca\ the same as [ac], . . . and [la] the same as [at].

The notation for summation here indicated is that first used

by Gauss and since generally employed in works on the Method

of Least Squares in writing normal equations. The notation

2a 2

, ^ab, used by a few writers, and in former editions of this
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book, has the same meaning as \ad\, \_ab~\. The sum of the

squares of the residual errors may be written either ^v2 or

\vv\, and in this book the former will be employed as it more

readily calls to mind its name.

50. Hence the method of adjustment of indirect observa

tions of equal weight is to write for the ;/ observations the n

observation equations (10), then to form the q normal equations

(n), and their solution will furnish the most probable values

of the unknown quantities. Numerous examples of the appli

cation of this method will be found in Chap. VII.

As a simple illustration let three observation equations be

421 22, = + 6. i
,

50, + 22, = + 3.8,

321 3*2
=

0.9.

Here a
t
= + 4&amp;gt; a, = + 5, #

3
= + 3, b, = 2, b2

= + 2,

3
= _

3, M, = + 6.1, M2
= + 3.8, M3

= -
0.9. The forma

tion of the sums is now made, carefully regarding the signs of

the co-efficients ; thus,

[aa]
= + 4

2 + 5
2 + 3

2 - + 50.0,

\ab\ = - 8 + 10 9 =
7.0,

[aM~\ = -f 24.4 -f 19.0 2.7
= -f 40.7,

=, 2
2 + 2

2

-f 3
2 = -r 17-0,

= 12.2 -f- 7-6 + 2.7
=

1.9.

Here \ba] need not be computed, as its value is the same as

[a&] ,
thus the two normal equations are

+ 50^ 7^2
= +40.7,

72, + 17^2 1.9,

the solution of which gives z
l
= + 0.8472 and z2

= +0.2371 as

the most probable values correct to the fourth decimal place.
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Independent Observations of Unequal Weight.

51. The more usual case in practice is where the observa

tions have unequal weights. As weights are merely numbers

denoting repetition, it is plain that if each observation equa
tion be written as many times as indicated by its weight, the

reasoning of Art. 47 and the rule of Art. 48 applies directly

to the determination of the probable values of the unknown

quantities. Instead, however, of writing an observation equa
tion as many times as indicated by its weight, it will be sufficient

to multiply it by its weight when forming the other products.

52. The following rule may hence be stated for the adjust

ment of independent observations of unequal weight upon
several related quantities :

For each weighted observation write an observation equa
tion, noting its weight. Form a normal equation for z

l by

multiplying each equation by the co-efficient of z
l
in that equa

tion, and also by its weight, and adding the products. In like

manner form a normal equation for each of the other unknown

quantities by multiplying each observation equation by the co

efficient of that unknown quantity in that equation, and also

by its weight, and adding the results. The solution of these

normal equations will furnish the most probable values of the

unknown quantities.

For example, let three observations upon two unknown

quantities give the three observation equations,

2Z, -f- 3 2
= -f 6, weight 3,

+ 2Z l -f 3, weight 7,

3*2 = + 5, weight 2.

To form the normal equation for z^ the first equation is multi

plied by the co-efficient 2 and by the weight 3, that is, by
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6; the second is multiplied by + 2 an ^
7&amp;gt;

that is, by + 14;

the third is multiplied by o and 2, that is, by o; the addition

of the products gives

-f 4oz x i Sz2
= -f 6.

To form the normal equation for 2 ,
the first equation is mul

tiplied by -f- 3 and by 3, that is, + 9 the second by o, and the

third by 6; the sum of products being

iSz l + 45^2
= -h 24.

The solution of these two normal equations gives z
l
= -f 0.475

and z2 + 0.724 as the most probable values of the two

quantities which were indirectly observed.

53. In order to put this method into an algebraic algorithm

and at the same time review the general reasoning, let Mlt

M2 ,
. . . Mn be the results of the n observations which have been

made to determine the values of the q quantities z z2t . . . z
q

.

As before, let each observation be represented by an observa-

tion equation, thus :

ajt -f hz2 + . . . + hzq Mi with weight / x ,

(12)
a Zl + ^2 + + /2Zq

= M
&quot;

Whh Weight ^2)

0*^+^*2+ + InZq = Mn with weight/^.

Now, if ZvS2 ...zq
denote the most probable values of the

quantities sought, and these values be substituted in (12), these

equations will not reduce to zero, but leave small residuals, v
lt

v2 ...v. Thus strictly,

aiZj _j_ l&amp;gt;lZ2 -f . . . -f liZq
- Mi - v, with weight/,,

a& + b&* + ... + /&- M, = v2 with weight p2 ,

anz^+ bnz*+ - -f l**q
- M = Vn with weight/,,

which may be called residual equations.
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Now, according to the general principle (6), the most probable
values of the q unknown quantities z lt z2 . . . zq are those that

render the expression

2
-I- ... + pnVn* = a minimum.

To abbreviate, designate this quantity by ^pv
2

. Remembering
that vS, v* . . . i n

2 are functions of z lt z2 . . . z
q ,

it is plain that

the derivative of ^pv
2 with reference to each variable must be

zero, and that hence there are the following q conditions for

the minimum :

dv l dv2 .
dvn

pVi-T + P*V* ~r + * +A -r-
=

&amp;gt;

azl dz
l

az
l

dv l ,
dvz ,

dvnpM ,- +P2v2 -^ + . . . +p*vH - ? = o,
dz2 dz2 dz2

dv,
,

dv2 . dvn
PVi-r- +P*v*~r + - +Pv* ^- = -

dZg dzq dZq

The values of the differential co-efficients in these conditions

are readily found by taking the derivatives of the residual

equations with reference to each variable, thus :

dv t dv2 dv l ,= ~r = &quot;2, -j-
= h, etc. ;

aZi dZi dz2

and the conditions then become

. . . 4- /?&amp;gt;
= o,

which are as many in number as there are unknown quantities

2^ ^2 ... z
q

. If in these the values of v v2 . . . vn be replaced
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from the residual equations, the final normal equations will

result. As before, the expression of the normal equations may
be abbreviated by using the square bracketed notation for

summation, namely,

[ paa\ =p^
[pab] =

pia,b t

M2 + . . . -{- pnanMn , etc.,

and thus the normal equations are

[paa\z l + [pab~\z2 -f . . . + [pal]z&amp;lt;,
= [paM ],

[pba]z, + [pbb]za + . . . + [pbl}zq
=

by whose solution the most probable values of zl1 z2 . . . z
q may

be found. The co-efficients in these equations show the same

symmetry as those in Art. 48, since, as before, \_pbd\ y [/&amp;gt;/],

etc., are the same as \_pafr], \_pbl~\ t etc.

54. Thus, if there be n observations for determining q un

known quantities, the most probable values of the unknown

quantities are obtained by writing n observation equations as

in (12), and forming the q normal equations as in (13); then

the solution of these normal equations will furnish the most

probable values of the q unknown quantities. In the most

common cases the co-efficients in the observation equations

(12) are + I, I, or o, and, in the formation of the co-effi

cients of the normal equations, the signs must be carefully

regarded. Many examples of adjustment by this method are

given in Chap. VII.

As a simple illustration let there be given the following four

weighted observation equations upon the two quantities g,

and z2 :
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No. i. + * = o, weight/, = 8,

2. + 32 = O, p2
= 10,

3. +2i+ 2Z2 = +0.25, /3
=

I,

4. + s, 3^2
=

0.92, /4
=

5,

These co-efficients and weights, arranged in tabular form, are

No. a

1. + i

2. o

3- + 1

4- +i

The products paa, pab, etc., are now formed as below, and

their summation furnishes the co-efficients for the two normal

equations ; thus,

b
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In the formation of the co-efficients of normal equations

tables of squares, multiplication tables, and calculating ma
chines will often be found very useful. The method of using

the table of squares at the end of this volume for the forma

tion of the products ab, ac, etc., is explained in Art. 172, and

a method for checking the correctness of the co-efficients
\ab~\&amp;gt;

\_ac\ t etc., is given in Art. 142.

Solution of Normal Equations.

55. The normal equations which arise in the adjustment of

observations may be solved by any algebraic process. When
the co-efficients consist of several digits, or when the number

of unknowns is greater than three, it is desirable to follow a

method by which checks may be constantly obtained upon
the accuracy of the numerical work. Such a method, devised

by Gauss, is presented in Chap. X.

When the number of unknown quantities is two, the obser

vation equations furnish the two normal equations

[aa]z t + \ab\z2 = \aM\
\ab\z, + \bb\z,

=-- \bM\

the solution of which may be directly effected by the formulas

-

_

[aa][bb\ -\ab]*

_ \aa\bM} - [ab}\aM]
&quot; &quot;

while checks upon the numerical work may be obtained by

substituting the computed values in the given normal equa

tions which should be exactly or closely satisfied.

When logarithms are used it will generally be advantageous

to write the formulas thus
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_ \bb\aM]/\ab~\
- [bM]

l
&quot;

at]
-

[at]

_

\aa\\bby\aU}
-

[al&amp;gt;]

as then the table need be entered only three times in finding

the numbers corresponding to two terms in the numerator and

one in the denominator, whereas by the former formulas six

entries are required.

As an example let the two normal equations be

90.07^ -f- 404.56*2 = 295.99,

404.56^ + 1934.10^2 = 1306.90.

Here, by the use of either numbers or logarithms, the solution

gives the values

zi = + 4-*5 2 7 z2 = 0.1929,

which, substituted in the normal equations, reduce the first to

+ 0.004 = and the second to -f- 0.028 = o. The first is

satisfied as closely as the data admit, while the error in the

second can be reduced, if deemed necessary, by carrying the

values of 2
X
and z2 to five decimal places.

When the number of unknown quantities is three, general
formulas for solution are best derived in the determinant form

given in Art. 140. This determinant method is easily remem
bered and may be advantageously used for the case of two

unknown quantities.

Conditioned Observations.

56. Thus far it has been considered that the quantities to

be determined by observation were independent of each other.

Although they have been related to each other through the
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observation equations, and have been required to satisfy ap

proximately those equations, they have been so far independent,
that any one unknown quantity might be supposed to vary
without affecting the values of the others. All systems of values

of the unknown quantities have been regarded equally possible,

and the methods above developed show how to determine the

most probable system.

In the class of observations now to be discussed, all systems
of values are not equally possible, owing to the existence of

conditions which must be exactly satisfied. Thus, having
measured two angles of a triangle, the adjusted value of one

is entirely independent of that of the other
; but, if the third

angle be measured, the three angles are subject to the rigor

ous geometrical condition that their sum must be exactly 180,

In conditioned observations there are, hence, two classes of

equations, observation equations and conditional equations ;

the number of the first being generally greater than the number

of unknown quantities, and that of the latter always less.*

57. Designate the number of observation equations by ;/, the

number of unknown quantities by q, and the number of condi

tional equations by ;/. If no conditional equations existed, the

principle of Least Squares (6) would require that the adjusted

system of values should be the most probable for the n inde

pendent observations. The n conditional equations, being less

in number than the q unknown quantities, may be satisfied in

various ways ; and, further, the final adjusted system of values

must exactly satisfy them. Hence it must be concluded, that,

of all the systems of values which exactly satisfy the ;/ condi

tional equations, that one is to be chosen, which in the n

* In most books upon this subject, the term &quot;

equations of condition
&quot;

is applied

indiscriminately to both of these very distinct classes, and is a cause of some per

plexity to the student. The excellent distinction of the Germans,
&quot;

Beobachtungs-

gleichung
&quot; and &quot;

Bedingungsgleichung,&quot; ought certainly to come into use.
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observation equations makes the sum of the weighted squares

of the residuals a minimum.

The problem of conditioned observations may be, then,

reduced to that of independent ones by finding from the ri

conditional equations the values of n unknown quantities in

terms of the remaining q n quantities, and substituting them

in the n observation equations. There will thus result n inde

pendent observations upon q n quantities. From these the

normal equations are to be formed, and the most probable
values of the q n quantities deduced. Substituting these

values in the ;/ conditional equations, the remaining n quan
tities become known. Thus the q quantities exactly satisfy

the conditional equations, and at the same time are the most

probable values for the observation equations. This, therefore,

is a general solution of the problem.

For example, consider the measurement of the three angles

of a plane triangle. Let zu z2 ,
and #

3
be the most probable

values of the angles, and let the observation equations be

z, = Ml}
z2 = M2 ,

z
z
=

J/3,

which are subject to the rigorous condition

z, +z2 + 3
= 1 80.

From the conditional equation take the value of zy and substi

tute it in the observation equations, giving

z t
= MI, z2 = M2 ,

z t -j- z2 1 80 My

The most probable values of z
l
and z2 may be now obtained

by the method of Art. 47, since the three observation equa
tions are independent. Then the most probable value of z^ is

1 80 -*, *,.

58. Although the above method is perfectly general, and very

simple in theory, it gives rise in practice to tedious computa-
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tions whenever the number of conditional equations is large.
The process generally employed is the &quot; method of correlatives,&quot;

due to Gauss, which will now be explained ;
the conditional

equations being considered as of the first degree, or linear,
and the number of observations being the same as that of the

quantities to be determined, or ;/ = q.

Consider q unknown quantities connected by the ri rigorous
conditions,

a -f- a
l
z

l 4- a 2Z2 +- . . . -j- o
q
z
q
= O,

A 4- A.,0, 4- X2z2 -f- . . . -f \gZq = o.

Let Miy M2 . . . yJ/
?
be the values found by the observations for

#,, ^2 ... #,. If these be inserted in the conditional equations,

they will not reduce to zero, but leave small discrepancies,
du d2 . . . dn &amp;gt;,

thus :

a + a,M, + a2M2 -f . . . + o.qMq
=

&amp;lt;t

lt

fa + p sMt + J32M2 -f . . .

AQ 4- A,J/i 4- A2J/2 4- . . .
-

Let v lt v2 . . . v
q
be corrections, which when applied to M^M2 . . . M

gl
will render them the most probable values, and

cause the discrepancies to disappear ; thus, if s zz . . . z
q
be

the most probable values,

z l
= M, 4- v lf z2 = M2 4- v2 . . . z

q M
q 4- vq .

Then the insertion of these in (14) gives the reduced condi

tional equations

a
1v l 4- 0-2^2 4- ... 4- o.

qvq 4-^ = 0,

^1^1 + ^-2^2 + + AyZ/f 4- drf = o.



58. CONDITIONED OBSERVATIONS. 6 1

For the sake of shortness, let these n conditions be expressed

by the notation f(a),f(p) . . . /(A).

Let / t , /2 . . .pq
be the weights of the observations Mlt

M2 . . . Mq
. The corrections v lt v2 . . . v

q
are the same as the

residual errors, and the sum of their weighted squares is repre

sented by ^pv
2

. The most probable values of z iy z2 . . . zq are

those that render a minimum the expression

2/z,
2 _ 2AVO)- 2KJ(p) - ... - 2A&amp;gt;/ (A),

where K19 K2 . . . Kn are multipliers, or &quot;

correlatives,&quot; of the

conditional equations.*

The derivative of this expression with reference to each v is

to be put separately equal to zero, thus :

1 I
- (OL& 4- jMTa + + ^AV) = o,

= O.

These q equations together with the n conditional equations

are sufficient for the determination of the q residuals and the

n correlatives. The residuals may be written

v = A -4- K -\- 4-

~A A A

A A A

A A A

* It is shown in works on the differential calculus, that the maximum or mini

mum of a function, F(x,y,z), whose variables are connected by conditional equa

tions, &amp;lt;(&amp;gt;(x,y, z) = o, 6(x,y,z) = o, is to be found by multiplying the conditional

equations by undetermined co-efficients, adding them to the function, and then,
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and, if these be substituted in the reduced conditional equa
tions, they become

in which the usual notation for sums is followed, for example :

Ftf/?&quot;! _ Ofifit 2 /?2 ttqPq

- P J P\ A Pq

The co-efficients in these equations have similar properties

to those in the normal equations derived for independent ob

servations, those of the first row being the same as those of

the first column, and so on. Being ri in number they deter

mine the n correlatives
;
and the residuals v are then known.

These residuals, applied as corrections to the observations,

give the most probable values of the quantities #,, z2 . . . z
q ,
and

these must exactly satisfy the q conditional equations.

580. As an illustrative example let there be five quantities

connected by the two conditional equations,

ZL + Z2 % = o, z2 2
4 -f z

s
= o,

and let the results of five observations be

*x
= 10.1, z2

= 6.6, z
3
= 18.0, z

4 9.2, 2
5
=

2.7 inches,

by the usual rule, determining the maximum or minimum of the new function,

f(xt y, z) + c
&amp;lt;p(x, y, z) + c Q(x, y, z).

The minimum
2/&amp;gt;v&quot;* only gives the most probable values of the unknown

quantities when these are independent. (See Art. 42.)
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the weights of these observations being

A =
I, p2 = 2, /3

=
I, /4

=
I, /5

= I.

It is required to adjust the observations.

By comparing the conditional equations with (14) are found

= o, or,
= + i, a2

= + i,
tf

3
=

i, ^
4
=

, 5
=

o,

A =
o, A = o, A = + i, /?3

=
o, /?4

= -
1, /?5

= -f i.

Also by substituting the observed values in the conditional

equations are derived d^ 1.3 and d2
= -fo.i. The co

efficients of the equations (16) are next found
;
for example

The correlative normal equations themselves then are

2.5^ + o.5 2̂ 1.3
= o,

0.5Kl -f 2.5^ + 0.1 o,

whence K, = +0.55 and K3
= 0.15. From (15) the most

probable corrections to the observed values are found to be

^i = +o-5S, ^2
= +0.20, e&amp;gt;

3
= 0.55, v4

= +0.15, v
s
=

0.15,

and the final adjusted values are

*,= 10.65, z2
= 6.So, ^3=17-45. Z

4
=

9-3S&amp;gt;
z
s
= 2 -55)

which exactly satisfy the two conditional equations.

This problem may be reduced to one of independent obser

vations by eliminating two of the unknowns by means of the

conditional equations. Thus, if z
3
and z^ be eliminated the

observation equations are z
l
= 10.1, #, + z2

= 18.0, z
4
=

9.2,

_ z + ^ 2.7, all with weight I, and z 2
= 6.6 with weight 2.
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. A valuable check upon the solution of the correlative

normal equations is given by the necessary relation,

[AV] = o,

which may be proved in the following manner:

Let the first equation in (14) be multiplied by K^ the second

by K2 , the last by Kn ,, and let the results be added, giving

(*& + AJT, + . . . + A^K

a
q , q2 ... H,vq n n. = o,

Now, as shown on page 61, the coefficients of v
lt v2 ,

. . . v
qt

in

this equation are ^z;,, /&amp;gt;
2^2 ,

. . . /^ Hence

(A,
a +/^2 + . +AV) + (JW. + 2̂ 2̂ + - - - + Kdn) = o,

which may be abbreviated as is done above. Thus, if the

residuals be computed from the observation equations, thi?

relation furnishes a check on the numerical work.

For instance, in the example of the preceding article, the

values of the residuals v have been found. Then

= 0.3025 + 0.0800 -|- 0.3025 + 0.0225 -{- 0.0225 H~ -73

Further, the values of K and d are

K, + 0.55, J 2
=

0.15,

&amp;lt;

=
1.3, d2

= + o.i.

and accordingly

[Kd] - + o.ss(- 1.3)
-

0.15(4- o.i) = -
0.73.

The necessary relation ~2pv
2 + \Kd~\ = o is hence exactly sat-

isfied, and the numerical work may be regarded as correct.
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59- Problems.

1. Six indirect observations upon two quantities furnish the fol

lowing observation equations:

+ 222 = 1.20,

*i -f 3*2 4-65,

*i + *2 = + 2.35&amp;gt;

Si 22 = -f 3-70.

Form the two normal equations and find the most probable values

of z
t and za .

2. The bearing of a line is taken five times with a solar compass,

giving the values

A. 12 ., N. f ., N. 10 W., N. 2 W.. N. 2 .g.

What is the adjusted bearing of the line if the weight of the last

observation is five times that of each of the others?

3. Solve the following normal equations:

2Zi Z2 + 0.52 = O,

Zi + 422 %3 Z4 0. 26 = O,

%2 + 223 24 -f- 0.47 = o,

- z2 23 + 324- 25-1.08 = 0,

- 24+ 32 5 + 0.34 = 0.

4. A plane triangle has the angle A measured ten times, B meas

ured five times, and C measured once. The sum of the three ob

served values is found to differ d seconds from 180 degrees. Ho\\

shall this d be divided among the three angles?
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CHAPTER IV.

THE PRECISION OF OBSERVATIONS.

60. In the adjustment of observations, it is often necessary
to combine measurements of different degrees of precision ;

and

for that purpose the determination of their weights is neces

sary. When the most probable or adjusted values have been

obtained, it is also well to know what degree of confidence

may be placed in them, so that comparisons may be made with

values obtained under other circumstances. The comparison
of observations is a very important part of the Method of Least

Squares, since the knowledge of the value and precision of

measurements is required for their most advantageous use.

Moreover, the study of the precision of measurements is always

necessary to improve and perfect the methods of observation.

The Probable Error.

61 The quantity usually selected to compare the precision

of observations is the probable error, of which the following is

a definition :

In any series of errors the probable error has such a value

that the number of errors greater than it is the same as the

number less than it. Or, it is an even wager that an error

taken at random will be greater or less thai? the probable

error.
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The probable error is, then, the value of x in the probability

integral (4) when P =
J,

or it is the value of x given by the

equation
i 2 rhx- =

77=1 c-**dJue.
2 VWo

By interpolation from Table I, Chap. X, it is found that

P= 0.5 when hx = 0.4769.

Hence, denoting this value of x by r, the equation

(17) hr = 0.4769

gives the relation between the measure of precision h and the

probable error r, and shows that h varies inversely as r.

62. To render more definite the conception of the measure

of precision h and the probable error r, consider the case of

two sets of observations made with different degrees of accu

racy. Let the measure of precision of the first be // and of

the second 7z2 ; then, from equation (2), the probability of errors

in the first set will be represented by a curve whose equation is

y = h^dx.Tr *e h?x*

t

and for the second set by a curve

y = hz.dx.Tr-te-W**,

in which dx is the constant difference between two consecutive

errors. Now, suppose that the second set is twice as precise

as the first, so that h
l //, and /? 2

= 2h ; then the equations
will be

y = ahe- h2*2 and y = 2ahe~*h***t

in which a represents the constant ir~^dx. The curves corre-
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spending to these equations are given in Fig. 6;

being the one for the set of observations whose measure of

precision is //, or //, and XB2A 2B2X the one for the set whose

measure of precision is h or 2k. These curves show at a

glance the relative probabilities of corresponding errors in the

two sets : thus the probability of the error o is twice as much

in the second as in the first set
;
the probability of the error

OP, is nearly the same in each
;
while the probability of an

error twice as large as OP l
is much smaller in the second than

in the first set. Now, if the lines P t
B P2B2 be drawn so that

the areas P 1
B

1
A

1
B

1
P

1
and P2B2A 2B2P2 are respectively one-

half of the total areas of their corresponding curves, the line

OP t
will be the probable error of an observation in the first set,

and OP2 the probable error of one in the second set. Repre

senting these by the letters rl
and r2 ,

there must be in each

case the constant relation

= 0.4769, = 0.4769 ;
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and, since h2 is twice /zn it follows that r2 must be one-half

of r
t

.

The probable error, then, serves to compare the precision of

observations equally as well as measures of precision. The
smaller the probable error, the more precise are the measure

ments. For instance, if two sets of observations give for the

length of a line in centimeters

L l
= 427.32 0.04 and Z2

= 427.30 0.16,

in which 0.04 and o. 16 are the respective probable errois, the

meaning is, that it is an even wager that the first is within 0.04

of the truth, and also an even wager that the second is within

o.i 6 of the true value; and the precision of the first result is

to be regarded four times that of the second. The probable
error thus serves as a means of comparison, and also gives an

absolute idea of the uncertainty of the result.

63. In Art. 43 it was shown that the squares of measures

of precision are directly proportional to weights ;
and in

Art. 6 1 it is established that measures of precision are in

versely proportional to probable errors. Hence the important
relation :

Weights of observations are inversely proportional to the

squares of their probable errors
; or, in algebraic language,

(18)

Weights and probable errors are constantly employed in the

practical applications of the Method of Least Squares, while

h is only needed in theoretic discussions. By means of the

relation just established, the weights of observed results of

different degrees of precision may be found from their computed
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probable errors, and the observations be thus prepared for

adjustment. For instance, in the two results

Zi = 427.32 0.04, Z2 = 4 2 7-3 - l6
&amp;gt;

it is seen that the weight of 427.32 is sixteen times that of

427-30.

Probable Error of the Arithmetical Mean.

64. Let M M2 . . . Mn be n direct observations on the same

quantity. The weight of each is i, and the weight of their

arithmetical mean is n. Let r be the probable error of a single

observation, and r the probable error of the arithmetical mean.

The principle (18) of the last article gives

from which

(19) r =
T- ;

\fn

or, the probable error of the arithmetical mean is equal to the

probable error of a single observation divided by the square

root of the number of observations.

The probable error of the mean, hence, decreases as V

increases. If ten observations give a certain probable error

for the mean, forty observations will be necessary in order to

reduce it to one-half that value.

65. To find r, the probable error of a single observation,

consider the fundamental law of the probability of error (2), or
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By Art. 12 the probability of the occurrence of the independent

errors xu x2 . . . xn is the product of the separate probabilities, or

Now, for a given system of errors, the most probable value of h

is that which has the greatest probability ;
or h must have

such a value as to render P r

a maximum. Putting the first

dPf

derivative - equal to zero, and reducing, gives
all

n 2h 2 *Zx2 = o, or h = /
n

.

V 2-S^

Since, by Art. 61, hr equals the constant 0.4769,

0.4760
-

Here ^x2
is the sum of the squares of the true errors, which

are unknown. In a large number of observations the errors

closely agree with the residuals, and ^x2

may be taken as equal

to ^v2
; but, for a limited number of errors, ^v2

is less than 2^2
,

since, by the principle of Least Squares, the first is the mini

mum value of the second
;
so that

where it
2

is a quantity as yet undetermined. The absolute

value of it
2 cannot be found

;
but it is known to decrease as n

increases, and for a given number of residuals to increase when

2;r
2 increases : as the best approximation, it

2

may be taken as

2jr
2

equal to . Then
n

,

r2 2*2 2v*
^x2 = ^v2

-\
---

,
or =-

j

n n n i
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and, inserting this in the above value of r
y

it becomes

(20) r =

This is the formula for the probable error of a single direct

observation, or of an observation of the weight unity. To use

it, the residuals are to be found by subtracting each measure

ment from the arithmetical mean, and the sum of their squares

then formed. When r is known, the probable error / O of the

arithmetical mean is found by the formula (19), or it may be

written at once

(21)
n(n i)

which is the usual form for computation.

Probable Error of the General Mean.

66. Let Ml} M2 . . . Mn be n direct observations having the

weights / p2 . . . pn . The weight of the general mean is

p i

Jr p2 _j_ . . . -\- pn ,
or S/. Let r be the probable error of an

observation of the weight unity, and rQ the probable error

of the mean. Then, from the fundamental relation between

weights and probable errors,

from which the probable error of the mean is

(22) r =
-jL-;

and, in general, the probable error of any observation is equal

to r divided by the square root of its weight. To find r, an
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investigation like that in the preceding article could be em

ployed ;
but it may be well to give one of a different character.

67. Let /z be the measure of precision of an observation of

the weight unity, and // h 2 . . . hn those of the observations

whose weights are/,, /2 .../. By formula (7) the quantities

h iy -^2 ... hn may be expressed in terms of the weights, thus :

and, in general, if x be any error, p the weight of the corre

sponding observation, and h the measure of precision of an

observation of the weight unity, the probability y is, from (2),

y = hp*7r-*dx.e-
h*Px\

^fix*
Now, the quantity ^px

2

y is the same as -*
t since each term,

such as p2x2 , occurs ny2 times in n observations
; and, for a con

tinuous series of errors,

Taking in this hx\jp = t as the unit variable, it may be

written

The value of the integral in this expression is ,* and hence

* From the footnote to Art. 31,
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From Art. 61 the value of is ( Y- hence
/z

2

\o. 47&amp;lt;59/

r= 0.6745

is the probable error of an observation of the weight unity.

Now, 2/.r
2

is in terms of the true unknown errors, and is

greater than ^pv\ Place, then,

in which u 2
is a quantity to be determined. The probability, /&quot;,

of the system of errors, is

P Ke-^Px* J &amp;gt;-
t

Here it is seen that the law of probability of //
2

is similar to
that of an error x ; and, as in Art. 31, it may be shown that the
constant K is k^du. The mean of all the possible valu-s
of z/

2
is, then,

h r+OT

j-L^e-^u
= _,

Placing / = t\Is, this becomes

Differentiating .his equation with reference to s, and regarding / as constant

-/V
Dividing this by ds, and making s = i, it becomes

ry?ve ~t2
t
zdt = one-half of the integral above-
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and this must be taken as the best attainable value of u*. But

i ^px
2

TT
it was shown that is equal to . Hence

2k2 n

trom which

n n i

and therefore the probable error r becomes

(23) r= 0.6 745

The probable error of the general mean is now, from (22),

(24) r = 0.6745

If the observations be all of the weight unity, ^p becomes #,

and the formulas (23) and (24) agree with (20) and (21). The

probable error of any observation whose weight is p is found

by dividing r by the square root of /.

Laws of Propagation of Error.

68. Let
,3&quot;,

and ^ be two independently measured quantities

whose probable errors are 1\ and r2 . It is required to find the

probable error R of the sum #, -}- z or of the difference Z
L

zv
Let Z = ^, i #2 an(i let the errors arising in the two cases be,

Xi t x&quot;, Xi&quot;
, etc., for z, t

Xzt x2 &quot;,
x2

&quot;r

, etc., for z2 .
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Then the corresponding errors of Z are

X = xi x2 ,
X&quot; = x? xa &quot;,

X&quot; = */&quot; *, &quot;,
etc.

Squaring each X, and adding the results, gives

2X2 = Sxs

The products x^x* will be both positive and negative, and, on

the average, ^x,x2
= o : hence

and, if n be the number of errors,

Now, by Art. 65, it is known that varies with r2
: hence,

n

for the case in hand,

(25) *&amp;gt;=** + *;

from which the probable error of Z is known.

In like manner, if Z be the sum or difference of several inde

pendent quantities, namely, if

Z = z
l z2 z

l
. . . zm ,

then the probable error of Z is given by the relation,

This formula is very important in the discussion of linear

measurements.
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6g. Secondly, consider Z to be a multiple of an observed

quantity z, so that Z = Az, where A is a known number. Then
an error x in z produces an error Ax in Z, and

^T = Ax, X* = A 2*2
,
and 2X2 = A22x*.

Hence, as before, it is to be concluded that

(27) R2 = A 2r2
,

or R = Ar.

By combining the principle of the last article with that just

deduced, it is seen, if

Z = Az, Bz2 Cz
3 etc.,

and if the probable errors of # z2 , z^ are rlt r2) ry that the prob
able error of Z is given by

(28) R2 = A2rs -f B*rj -f C*r + etc.,

which is a more general formula than (26).

It is interesting to note that formula (19) can be deduced

from (26), and also (22) from (28). Thus, if # zz . . . zn are n

observed values of the same quantity, the probable error of

their sum is, by (26),

R = \lrS + r2
2 + . . .

and by (27) the probable error of ^th of this sum is

which is the probable error of the arithmetical mean, as in (19).
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70. Next, consider Z to be the product of two independently
observed quantities z

l
and z2t whose probable errors are r

l
and

^ Let X be an error in Z corresponding to the errors x
t

md 4r2 in z
i and z2 : then

Z -f X =
(z t + *,) (s2 4- #2 )

= z,z2 + s,*2 + z2*i 4-

Here ^= z^z^ and jr^ vanishes in comparison with z^ and

.s^, ;
so that

X = z^2

Squaring each error X, and taking the sums, gives

the last term of which vanishes, since the product x^x2 is as

likely to be positive as negative : hence

and accordingly, as in Art. 68,

(29) & = z*r2
*

from which the probable error of Z may be computed.

71. Lastly, let Z be any function of the independently ob

served quantities #,, #2 ,
&amp;lt;^

3
. . ., or Z =/(% z2 , z^ . .

.),
and let it

be required to find the probable error R of Z from the proba

ble errors rlt r2 ,
r
3

. . . of the observed quantities. Take xl9

x2 ,
x

z
as any errors in z z2 ,

zy and X as the corresponding error

in Z\ then

Now, if these errors are so small, that their second and higher
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powers may be neglected, the development of the function by

Taylor s theorem gives

dZ
,

dZ
,

dZX = x l + xz 4- x
3 -h . . .

dfe, dz2 dz
3

Accordingly, by the same reasoning as in the previous articles,

which is a general formula appplicable to all functions.

The laws of propagation of error, given by formulas (25) to

(30), are very important in forming proper rules for taking

observations, as well as in discussing and comparing results.

The law R = VV,
2 + r2

2
, which gives the probable error of Z

when Z #, -f- z2 ,
or when Z = z, z2 ,

has been likened by

Jordan to the celebrated geometrical theorem of Pythagoras.

Probable Errors for Independent Observations.

72. In Arts. 46-50 are given methods of finding the most

probable values of independent quantities which are indirectly

observed. To determine the probable errors of any adjusted

value, #, let pz denote its weight, and rz its probable error.

Then, if rbe the probable error of an observation whose weight

is unity, the relation (18) gives

i i
i :::,

r r*

from which

Hence, in order to find the probable errors of z[, z2 . . . zQ ,
it is
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necessary to find r and their weights. And, in general, the

probable error of any observation is equal to r divided by
the square root of its weight.

73. To find the probable error of an observation whose

weight is unity, the following reasoning may be employed :

Suppose that the normal equations (13) have been solved, and

the most probable values # z2 . . . z
q deduced. Let the corre

sponding true values be represented by #, -j- Sz lt z2 -f- z2 . . .

z
q -f- z

q,
in which s- &s2 . . . 8^ are small unknown correc

tions. Now if, in the observation equations (12), the most

probable values be substituted, they will not reduce to zero,

but leave small residuals v lt v2 . . . vn ;
thus :

a&i 4- bfa -{- . . . -f /,% 4- m, = v l with weight/,,

a2z, 4- b2z2 + . . . + I2zg + m
l
= v2 ,

with weight /2 ,

anz l 4- bnz2 4- ... 4- lnzq 4- mn vn ,
with weight/*,

while, if the corresponding true values be substituted, they will

give the true errors
;
thus :

a, (z l 4- &?,) + b, (z2 4- Sz2 ) 4- ... 4- m l
= x lt

a2 (z, 4- $z t ) 4- b2 (z2 4- Sz2 ) + . . . + m2
= x

2&amp;gt;

an (z, + & f ) 4- bn (z2 4- 322 ) 4- . . . 4- m, = xn .

Subtracting each one of the former equations from the latter

gives the following residual equations :

Vj. + #,&&! 4- b^&amp;gt;z2 -f ... 4- l$zq Xi,

v2 +a2 z l 4- b2 z2 4- . . . 4- &zq
= xzy

Vn 4- &amp;lt;*r$Zi 4- bn Z2 4- ... 4- ln^Zq Xn .

Now, the principle of Least Squares (6) requires that ^px* shall

be made a minimum to give the most probable values of jsu
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jr2 . . . zq ; and, by the solution of the normal equations, its mini

mum value is the sum ^pv
2

. From the residual equations a

relation connecting the two sums ^pv
2 and ^px

2

may be found

by squaring both members of each of those equations, multi

plying each by its corresponding weight, and then adding the

products. Without actually performing these operations, it is

evident, that if the squares and products of &? &sr2 . . . z
q
be

neglected as small in comparison with the first powers, the

result will be of the form

in which k lt k2 . . . kq
are co-efficients of the unknown correc

tions, and dependent only upon the known co-efficients and

weights. If the number of unknown quantities is q, there will

be q of these terms. Placing

it becomes

U 2 + U2
2

Now, the probability of the occurrence of the error xlt whose

measure of precision is h a and whose weight is / is, by (2)

and (7),

in which h is the measure of precision of an observation of

the weight i. And hence, by exactly the same reasoning as

in Art. 67, it may be shown, that, when n is a large number,

Further : if there be but one unknown quantity, there is but

one u2
,
whose value, as shown in Art. 67, is . And, since

2k*
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this is true whichever unknown quantity be considered, the

value of each ^t
2 must be -

; and, as there are a of these
2//

2

values, the above result becomes

from which

h =

Therefore, from the constant relation (17) between // and r,

the probable error of an observation of the weight unity is

(32) r= 0.6745

74. The probable errors of the values zlt z2 . . . zq can now
be found from (31) as soon as their weights are known. These
will now be determined.

The observations MIt M2 . . . Mn furnish the observation

equations (12) and the normal equations (13). The solution of

the latter gives the values of z lt z2 . . . zg in terms of Mlt

M2 . . . Mn , and co-efficients independent of those quantities.

Suppose the general solution to give

z, = a-
1M1 4- &amp;lt;J2M2 -h 0-3^/3 -f . . . +

z2 r lMl + T2M2 -f r*M, + . . . +

*f
=

^M&amp;gt; -}- &Af2 + 3
M

3 +... + LMn,

in which the co-efficients
&amp;lt;r,

T . . . depend only upon the con

stants a, b . . . / and the weights / p2 . . . pn . Then, if R
Zl

is

the probable error of z lt and r
t , r2 . . . rn are the probable errors

of Mlt M2 . . . Mny the formula (28) gives

-f . . . + &amp;lt;W.
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Now, since the squares of probable errors are inversely pro

portional to weights, this becomes

~
-r- + -r~ + + ~T~

=
/*, A p2 pn L / J

from which the value of pZi
is

i

A,= (7(7

L7~J

In like manner it is easy to show that the weight of z2 is the

reciprocal of I, and that the weight of z
q

is the reciprocal

-

Owing, however, to the labor of finding the co-efficients

&amp;lt;r,

r . . . C, it is better to deduce these expressions under a

different form. Suppose the normal equations to be solved,

giving

Z2 =

in which ^, ft . . . A. are co-efficients independent of Mlt

M2 . . . Mn . Then the respective weights of z z2 . . . z
q
will be

y
... To show this, it will be sufficient to consider

of, /32 /i
q

the quantity % and to prove that f$2 . By comparing

the above two expressions for 2 ,
it is seen that
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Squaring eadh of these equations, dividing each by its/, and

adding the results, gives

Now, if the normal equations (13) are solved by the method of

undetermined multipliers, the first is to be multiplied by a

number ftlt the second by /?2 ,
the ^

th
by ftq ,

and the products
added. Then, if upon these multipliers the following condi

tions be imposed,

all the terms except those involving /?2 will reduce to zero, and

the value of /32 will be the same as above expressed. Accord

ingly \

= /32 ,
and the weight of z2 is ~r ;

which was to be
\P J P2

proved.

75. The following is hence a method of finding the weights

of the values of the unknown quantities. Preserve the abso

lute terms of the normal equations in literal form during the

solution. Then the weight of any value, as zy is equal to

the reciprocal of the co-efficient of the absolute term which

belonged to the normal equation for zy

For example, take the normal equations

^2 z
3
= A2t

*2 + 2Z
3
= Ay
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The solution of these by any method gives

z
z
= \A, + J^2 + A

3 ,

and hence the weight of z
t
is

-|,
the weight of z2 is f, and the

weight of z
3

is i. It is evident, if it be only desired to find

the weight of zlf that A 2 and ^4
3
need not be retained in the

computation, but may be made zero. So, in finding the weight
of #2, only A 2 need be retained in the work.

76. As an illustration of the preceding principles, let there

be three observation equations of weight unity,

zl
=

o, z2
= o, Zj. z2

= + 0.51.

The normal equations are

2 Zl Z2
= + 0.51, *, + 2Z2

=
0.51.

Writing A l
and ^4 2 for the absolute terms the solution of these

equations gives

*, = ^A, + -An ** - -^i + ~^2,
o j o o

from which the adjusted probable values are z
l
= +0.17 and

Z2 0.17, while the weight of each of these values is seen

to be ij. The sum of the squares of the residuals is ^v2 =
0.0867, and from (32) the probable error of an observation of

weight unity is 0.20. This divided by \/i .5 gives o. 16 as

the probable error of the adjusted values of z
I
and z2 . The

adjusted value of the third observation is z x z2
= +0.34, and

by (25) the probable error of this value is 0.23. It is seen

that the corrections to the three observed values are here

numerically equal.
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Probable Errors for Conditioned Observations.

77. When conditioned observations are adjusted by the gen

eral method of Art. 57, where the q unknown quantities in

the n observation equations are reduced to q n independent

quantities by means of the n conditional equations, the proba

ble error of an observation of the weight unity is evidently

given by the formula (32), if q be replaced by q ri
&amp;gt;

or

(33)

and the probable errors of observations or values whose weights

are/,,/*, etc., are, by (31),

r, = -^=,
rz = -=, etc.

v^i VA

The weights of # *,...*, are to be found exactly as in

Art. 75.

For the case of direct observations on several quantities

adjusted by the method of Art. 58, the number of observation

equations is the same as that of the unknown quantities, or

n = q\ and, if n be the number of conditional equations, the

probable error of an observation of the weight unity is

(34) r = y

from which the probable error of any observation of given

weight can at once be deduced. In this case the residuals v

are merely the differences between the observed and the

adjusted values.
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78. Problems.

1. There are two series of observations of an angle, each taken to

hundredths of a second. The probable error of a single observation in

the first series is
o&quot;.6$,

and in the second
i&quot;.45. Compute the proba

bilities of the error o&quot;.oo and of the error 2&quot;.oo in the two cases.

2. It is required to determine the value of an angle with a proba
ble error of

o&quot;.2$. Twenty measurements give a mean whose probable

error is
o&quot;.38.

How many additional measurements are necessary?

3. Find the probable error of the mean of two observations which

differ by the amount a.

4. Let z 1} z2 ,
and z

3
be independently observed quantities whose

probable errors are rlt r2 ,
and ry l{ Z= z?-\-z2

*
-\- z

3
2 find the proba

ble error of Z.

5. Let r be the probable error in log a. What is the probable error in

the number a ?

6. Given the following observation equations :

2,
=

4.5, with weight 10,

z2 = 1.6, with weight 5,

2, z2 2.7, with weight 3.

What are the most probable values of z t and z2 with their probable
errors ?

7. Given the observation equations (all of equal weight)

22
X

Z2 + Z3
=

3,

32 i + 322 *s
= i4

42, + z2 + 4z3
= 21,

52, + 222 + 323
=

5,

to find the best values of zlf z2 ,
and zv with their probable errors.
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CHAPTER V.

DIRECT OBSERVATIONS ON A SINGLE QUANTITY.

79. In the preceding pages the fundamental methods and

formulas for the adjustment and comparison of observations

have been deduced. In this and the three following chapters

the application of these methods to practical examples will be

presented. The most common case of observation is that of

direct measurements on a single quantity, and this will form

the subject of the present chapter.

Observations of Equal Weight.

80. When a quantity is measured several times with equal

care, so that there is no reason for preferring one observation

to another, the observations are of equal weight. From re

mote antiquity the arithmetical mean of the measurements

has always been regarded as the best or most probable value

of the quantity sought ; and, as shown in Art. 44, this is con

firmed by the fundamental principle of the Method of Least

Squares.

Let z be the most probable value of the measured quantity,

n the number of observations, and M any observation. Let r

be the probable error of a single observation, and rQ the proba-
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ble error of the adjusted value z. Let also v be any residual

obtained by subtracting M from z.

The most probable value of the quantity is the arithmetical

mean, expressed, as in Art. 44, by formula (8),

v -

The probable error of a single observation, as shown in Art.

65, is, by formula (20),

Lastly, as shown in Art. 64, the probable error of the mean is,

by (19),

Formula (8) indicates the method of adjustment, while (20)

?nd (19) determine the precision of observation and of the

mean. After finding- z, each observation is subtracted from it,

giving n values of v. The squares of these are taken, and

their sum is ^v2
;
then r is computed, and lastly, r . If desired,

can be also found directly from formula (21),r

r = 0.6745
/ ^v-

V (-!)

which is the same as (19).

81. As an example, consider the following twenty-four meas

urements of an angle of the primary triangulation of the

United-States Coast-Survey, made at the station Pocasset in

Massachusetts, and recorded in the Report for 1854:
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Observations.
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5.19 for the first residual, which is placed in the column headed

v. The square of this is 26.94, which is placed in the column

headed v2
. The sum of all these squares is 92.15. Then from

(20) the probable error of a single observation is

r= 0.6 745 y
1- =

i&quot;-35 ;

and the probable error of the mean is, from (19),

V 24

hence the final value may be written 1 16 43 49&quot;.64 o&quot;.2S.

The precision of the mean of these twenty-four observations

is such that o&quot;.28 is to be regarded as the error to which it is

liable
;
that is, it is an even wager that the mean differs from

the true value of the angle by less than o&quot;.28, and of course

also an even wager that it differs by more than o&quot;.28. The pre

cision of a single observation is such that
i&quot;.35

is the error to

which it is liable
;
that is, half the errors should be less, arid

half greater, than
i&quot;.35

in a large number of observations. It

will be noticed that twelve of the above residuals are less, and

twelve greater, than
i&quot;.35.

In Art. 27 it was shown that the algebraic sum of the residu

als must always equal zero. This principle may be used to

furnish a check on the accuracy of the numerical work.

82. The tables in Chap. X will be found useful in abbreviat

ing computations. By the help of Table VI the squares of

the residuals can be readily found. By Table III the compu
tation of r and r can be much abridged ;

for instance, in the

case of the last article, n = 24, and

r = 0.1406 4/92.15
=

i&quot;.35,

r = 0.0287 ^92.15 = o .28.
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The table of four-figure logarithms will also prove useful in

extracting roots and performing multiplications.

When the tables are used, it will be found more convenient to

compute r from (21) than from (19). Formula (19), however,

is very important in indicating that the probable error of the

mean decreases, and hence that its precision increases, with

the square root of the number of observations.

It should be borne in mind, that the method of the arithmeti

cal mean only applies to equally good observations on a single

quantity, and that it cannot be used for the adjustment of ob

servations on several related quantities. For instance, let an

angle be measured, and found to be 6o degrees, and again let

it be measured in two parts, one being found to be 40 degrees,

and the other 20 degrees. The proper adjusted value of the

angle is not, as might at first be supposed, the mean of 6o and

60, which is 6oi degrees, but, as will be seen in the next chap

ter, it is 6oi degrees, a result which requires the correction of

each observation by the same amount.

Shorter Formulas for Probable Error.

83. The method of computing probable errors by formula (20)

is that considered the best by all writers. Nevertheless, on

account of the labor of forming the squares of the residuals,

a simpler and less accurate formula is often employed, in which

only the residuals themselves are used. To deduce it, let ;/ be

the number of observations, and ^v the sum of the residuals,

all taken with the positive sign, and ^x the sum of all the errors

^x
taken positively. Then - - is the mean of the errors

; and, by

the same reasoning as in Art. 67, this mean is

2/1 r* i

xe~hx dx = -=..

h\it
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Now since, by Art. 61, the product hr\* equal to the constant

0.4769, the value of r in terms of ^x is

r= 0.8453 -1

The sum of the errors 2* is in general different from the

sum of the residuals 2v. Both in Art. 65 and Art. 67 it was

shown that

and it may hence be concluded, that, on the average, x* is greater

than v2 in the ratio of n to n - I, and that, on the average, x is

greater than v in the ratio of ^n to \Jn i, or that

\Jn ^n i

Accordingly the above value of r becomes

( \

which gives the probable error of a single observation. By

substituting this in (19), the value of r becomes

, ,. Q.8453SP
(36) r = ==,

V i

which is the probable error of the arithmetical mean,

84. Formulas (35) and (36) will be found much easier to use

than (20) and (21). In Table IV the co-efficients of ^v are

tabulated for values of n from 2 to 100, and by its use the

computations are much abridged.
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As an example, consider the following eight measurements

of a line made with a tape twenty meters long, graduated to

centimeters :

Observations.
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the accuracy of work done with different instruments, or by
different observers. Under similar conditions, r should be prac

tically a constant for a given class of measurements
;
while for

different classes the different values of r indicate the relative

precision of the methods. For instance, suppose the same

observer to measure the same angle with two different transits,

and to find the probable error of a single observation with the

first to be
4&quot;,

and with the second 6&quot;. The relative precision

of the instruments is, then, inversely as these probable errors,

or as 3 to 2
;
and the weights of a single observation in the two

cases are as 3* to 2 2
,
or as 2\ to i

;
so that one measurement

made with the first instrument is worth 2\ made with the

second. These results, in order to be satisfactory, must be

deduced from a large number of observations
;
since the formu

las for probable error suppose that enough observations are

made to exhibit the several residuals according to the law of

probability of error as given by equations (i) and (2).

Observations of Unequal Weight.

86. When the observations on a single quantity have differ

ent weights, the most probable value of the quantity is to be

found by the use of the general arithmetical mean
; namely, by

multiplying each observation by its weight, and dividing the

sum of the products by the sum of the weights. Or if z be

that most probable value, M any observation, and / its weight,

then, as shown in Art. 45, formula (9) gives

The probable error of an observation of the weight unity, as

shown by formula (24), Art. 67, is
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in which n denotes the number of observations, and v any
residual obtained by subtracting M from z. Lastly the proba
ble error of

z&amp;gt;
as shown in Art. 66, is found by (22),

Formula (9) indicates the method of adjustment. Having
found the most probable value z, each observation is subtracted

from it, giving n residuals v. These are squared, and each i&amp;gt;

2

multiplied by the corresponding weight /. The sum of these

products is ^pv
2

. Then formula (24) gives the probable error

of an observation of the weight unity. Lastly, formula (22)

gives the probable error of z. And in general the probable
error of an observation of given weight may be found by divid

ing r by the square root of that weight.

87* As an example let the observations in the second column
of the following table be the results of the repetition of an angle
at different times, 18&quot;. 26 arising from five repetitions, i6&quot;.3O

from four, and so on, the weights of the observations being
taken the same as the number of repetitions. Then the general
mean z has the weight 21, the sum of the several weights or

p.
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the number of single measures. Subtracting each M from z

gives the residuals in the column v\ next from Table VI the

numbers in the column v* are found, and multiplying each of

these by the corresponding weight produces the quantities/?/,

whose sum is 62.95. Then, since n is 6, formula (23) gives

or, by the help of Table III,

r = 0.3016 1/62.95
= 2

&quot;-39-

This is the probable error of an observation of the weight

unity. From (22) the probable error of the general mean is,

-^ =
o&quot;.S ,

and the probable error of any given observation is found by
dividing 2^.39 by the square root of its weight.

88. The important relation (18) of Art. 63, that the weights
of observations are inversely as the squares of their probable

errors, furnishes, as already indicated in Art. 85, a ready means

of determining weights, if the probable errors can be obtained

with sufficient precision. When the weights are known, the

observations can be combined by (9), and the most probable
value determined.

As an example, consider the two following series of meas

urements of an angle ;
the first taken with a transit reading

to twenty seconds, and the second with a transit reading to

minutes. The angle was observed in each case ten times ; the
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circle being used in eleven different positions to eliminate errors

of graduation, while each time the two verniers were read to

eliminate errors of eccentricity.

With First Transit.
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and by (18) the probable error of that value is

As the probable errors of a single observation in the two cases

are
13&quot;

and 20&quot;, the corresponding weights are as 400 to 169;
so that one observation with the first instrument is worth about

2^ with the second.

When observations upon the same quantity are known to be

of different precision, and there is no way of finding the proba
ble errors, as in the example just discussed, weights should be

assigned corresponding to the confidence that is placed in

them, and then the general mean can be deduced. Of course,

the assignment of weights in such cases is a matter requiring

experience and judgment.

Problems.

89. The solution of the following problems will serve to

exemplify the preceding principles.

1. The latitude of station Bully Spring, on the United States northern

boundary, was found by sixty-four observations to be 49 01
09&quot;.

n
o&quot;.o5i.

What was the probable error of a single observation?

2. A line is measured five times, and the probable error of the mean
is o.o 1 6 feet. How many additional measurements of the same pre
cision are necessary in order that the probable error of the mean shall

be only 0.004 feet?

3. An angle is measured by a theodolite and by a transit with the

following results :

By theodolite .............. 24 13 36&quot; 3&quot;.!

By transit ............... 24 13 24 13 .8

Find the most probable value of the angle and its probable error.
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4. A base-line is measured five times with a steel tape reading to

hundredths of a foot, and also five times with a chain reading to tenths

of a foot, with the following results :

By the tape : 741.17 feet. By the chain : 741.2 feet.

741.09 feet. 741.4 feet.

741.22 feet. 741.0 feet.

741. 1 2 feet. 741.3 feet.

741.10 feet. 741-1 feet.

Find the probable errors and weights for a single observation in the

two cases, and also the adjusted length of the line.

Ans. 741.146 0.012.

5. Eight observations of a quantity give the results 769, 768, 767,

766, 765, 764, 763, and 762, whose relative weights are i, 3, 5, 7, 8, 6,

4, and 2. What is the probable error of the general mean, and the

probable error of each observation ?

6. The length of a line is stated by one party as 683.4 0.3, and

by a second party as 684.9 -3- What is to be inferred from the two

results ?
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CHAPTER VI.

FUNCTIONS OF OBSERVED QUANTITIES.

go. In this chapter will be discussed the determination of

the precision of quantities which are computed from other

measured quantities. For instance, the area of a field is a func

tion of its sides and angles : when the most probable values

of these have been found by measurement, the most probable
value of the area is computed by the rules of geometry, and
the precision of that area will depend upon the precision of the

measured quantities. Linear measurements will first receive

attention; for, although they are direct observations when the

result alone is considered, yet really the length of a line is

a function of its several parts, namely the sum. So, too, an

observed value of an angle is a function (the difference) of two

readings. All the following reasoning is based upon the laws

of propagation of error deduced in Arts. 68-71.

Linear Measurements.

91. As a line is measured by the continued application of

a unit of measure, its probable error should increase with its

length. The law of this increase is given by formula (26). If

the parts are all equal, and each be taken as the unit of length,
the number of parts is the same as the length of the line. Let
r denote the probable error of a measurement a unit in length,
R the probable error of the total observed length, and / that

observed length. Then (26) reduces to

(37) R = rfl;
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that is, the probable error of a measurement of a line increases

with the square root of its length.

For example, the value of r for measurements with an

engineer s tape on smooth ground is about 0.005 : hence,
for a line 100 feet long, R is 0.05 feet, and for a line 1,000 feet

long, R is o.i 6 feet.

Since, by (18), weights are inversely as the squares of probable

errors, and, by (37), the squares of probable errors are directly
as the lengths of lines, it follows that the weights of linear

measurements are inversely as their lengths, or

(38) ,,:*:,:: l
s l:f

Hence, if the weight of a measurement of a unit s length be i,

the weight of a measurement of. the length /will be -. This

pririciple is to be used in combining linear measurements for

which the value of r is the same.

92. The value of r may be found by measuring a line of the

length / many times, and computing R by the methods of

the last chapter. Then, by (37), the value of r is known. For

instance, take the eight measurements of a line about 189
meters long, which are discussed in Art. 84, for which the proba
ble error of a single observation was found to be about 0.05

meters. Here R = 0.05, and then r = = = 0.004 meters,
^189

which is the probable error of a measurement of a line one

meter in length.

The most convenient way, however, of finding r, is to make

duplicate measurements of several lines of different lengths.

Let the lenigths of the lines be / /, . . . 4, the differences

of the duplicate measurements be dlt d2 . . . dn ,
and the num-
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her of lines be n. These differences are the true errors of a

quantity whose true value is zero, and by Art. 67 the probable
error of an observed difference is

= 0.6745

Now, from Art. 68, this probable error is also

r =
y/r

2
-h r 2 =

ry/2,

and, by equating these two values of r
,

it is easy to find

(39) r= 0.4769 y-^-
2

which is the probable error of a measurement a unit long.

The weight / is to be taken as in accordance with (38).

For example, the following duplicate measurements of the

sides of a mountain field, made with a Gunter s chain, may be

considered.

No. of Side.
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Here for the first line

d 2

d^ = 0.03, d* = 0.0009, p,d
2 = Y = 0.0000523,

and similarly for each of the other lines. Then, by addition,

*%pd
2 = 0.001855, and lastly, from (39), the probable error of a

measurement of a unit s length (that is, of one chain) is 0.0073

chains, or 0.73 links.

93. The general formula (26) shows clearly how the pre

cision of linear measurements depends upon the precision of

the parts. Evidently the fewer the parts, the smaller will be

R, and the greater the precision. Also the longer the chain,

the fewer will be the parts, and the greater the precision.

It must be carefully noted, however, that the preceding rea

soning only applies to the accidental errors (Art. 7) of obser

vation, and that all constant errors must be investigated, and

removed from the results, before the formulas (37) and (39) are

used. The effects of temperature on the length of the chain

or tape, for instance, may be removed by reading the ther

mometer, and applying the proper computed corrections, and

the effects of side deviations may be removed by making the

chain sufficiently longer at the start. In general, the constant

errors of linear measurements increase directly as the length

of the line
;
while only the accidental errors increase as the

square root of the length.

Angle Measurements.

94. The measurement of an angle is in general effected by

taking the difference of readings from a graduated limb
;
and

these readings, in their turn, may be the means of readings on

two or more verniers. By the use of the principle expressed

in formula (25) it is possible to determine the precision of

these readings from the probable errors of observed results.
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As an example, the following measurements of an angle made

with a transit having two verniers reading to minutes will be

discussed. The angle was chosen at about 35 in order that

eleven readings might approximately go around the circle, and

each reading is the mean of the two verniers.

On Vernier A.
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single reading on one vernier. The reading of both verniers

not only eliminates the error of eccentricity, but adds much to

the precision of the results.

95. By the method of repetitions the precision of angle
measures can be further increased. The observations should

be conducted like those above described, except that the plate

is turned n times between the two readings. Let r^ be the

probable error of a mean reading, and r
z
that of the observed

result, which is -th of the difference of the two readings.
n

Then by (25) and (27), neglecting the error in pointing,

3=1^
By the method of the last article the mean of n readings
would give

The precision of ;/ repetitions is, hence, ^7i times greater than

the mean of n independent observations. However, the errors

in pointing, and other causes, render it doubtful if it is ever

advantageous to make ;/ exceed six or eight.

Precision of Areas.

96. Let ^ and #2 be the measured sides of a rectangle, and

r, and r2 their probable errors. Then by (29) the probable

error of the computed area z^2 is

R = vVf + z*r?.

If r be the probable error of a measurement a unit in length,

the law of (37) gives

r? = r2zt and r =
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and hence the probable error in the area is

R= /V*i**(*i +* )

For instance, let a lot 60 X 150 feet be laid out by an en-

gineer s chain, for which r =- o.oi. Then, by the formula,

R = 13.75 square feet, which is the probable error of 9,000

square feet, the computed area.

97. By the application of formula (30) the probable error

of any computed area can be found from the known probable

errors of its sides and angles. As one of the simplest cases,

take a triangle ABC, whose area is found from the angle A and

the two adjacent sides AB and AC. The observed values are

AB = 252.52 0.06,

AC = 300.01 0.06,

A = 4 2 i3 o&quot;
30&quot;.

The area of this triangle is \ARAC.sinA 25,453 square feet.

To compare with (30) let AB = s lt AC z2 ,
and sin A =z

3 ;

also r, = r2 0.06, and r
3
= o.oooii = tabular difference corre

sponding to
30&quot;.

Then

= AC. sin A,
dzt

= \AB. sin A,
dz2

= \AB.AC.
dz

3

By inserting all values in (30) it is easy to find R = 8.9 square

feet for the probable error of the area.

Remarks and Problems.

98. By the application of formulas (25) to (30) the precision

of many other functions of observed quantities than those
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above noticed may be investigated. A few of the simplest
cases are included among the following problems.

1. The radius of a circle is observed as 1000 0.2. Find the

probable errors of its circumference and area.

2. Find the maximum probable error of sin A + cos A when the

probable error of A is 20&quot;.

3. In order to determine the difference of level between two points

A and
&amp;gt;,

an instrument was set up halfway between them, and twenty

readings taken on rods held at each point, with the following results :

Rod at A. Rod at B.

7 readings gave 7.229 feet. 3 readings gave 9.806 feet.

8 readings gave 7.230 feet. 12 readings gave 9.807 feet.

5 readings gave 7.231 feet. 5 readings gave 9,808 feet.

What is the most probable difference of level between the two points

and the probable error of the determination?

Ans. 2.5772 0.00015.

4. A block of cast-iron weighing 100 pounds rests upon a horizontal

table, also of cast-iron. A horizontal force is applied to the block, and

it is observed that it begins to move when the force is 15.5 pounds. If

the probable error in the determination of this force is 0.5 pound, what

is the probable error of the co-efficient of friction?

5. A chronometer is rated at a certain date, and found to be 9 12^.3

fast, with a probable error of 0-^.3. Ten days afterwards it is again rated,

and found to be 9^21^.4 fast, with the same probable error. What is

the probable error of the mean daily rate ?

6. A line of levels is run in the following manner : the back and fore

sights are taken at distances of about 200 feet, so that there are thirteen

stations per mile, and at each sight the rod is read three times. If the

probable error of a single reading is o.ooi feet, what is the probable

error of the difference of level of two points which are ten miles apart?
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CHAPTER VII.

INDEPENDENT OBSERVATIONS ON SEVERAL QUANTITIES.

99. Independent observations on several related quantities

are to be adjusted by the methods of Arts. 46-50, and thrir

precision determined by the methods of Arts. 72-76. Tiie

following are the steps of the process :

ist, Let # zt , Zy etc., represent the quantities to be deter

mined, and for each observation write an observation equation ;

or, if more convenient, let # s2t zy etc., be corrections to

assumed approximate values of the unknown quantities.

2d, From the observation equations form the normal equa

tions, which will be as many as there are unknown quantities.

3d, Solve the normal equations : the resulting values of the

unknown quantities will be their most probable values, that is,

the best values that can be deduced from the given observations.

4th, Find the residuals, and the probable error of an obser

vation of the weight unity from formula (32).

5th, Find, if desired, the weights and probable errors of the

adjusted values of the unknown quantities.

When the number of unknown quantities exceeds four or

five, it will usually be found most convenient to use the algo

rithm of formulas (10) and (i i) for observations of equal weight,
and of (12) and (13) for those of unequal weight, and to solve

the normal equations by the method of Arts. 51-55. It will,

however, probably be best for a beginner to form the normal
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equations by the rules in Art. 48 and Art. 50, and to solve

them by his own algebraic method.

It will often be convenient to take the unknown quantities
as corrections, rather than as the real quantities themselves;
since thus the numbers entering the computation are much
smaller. The following practical examples will illustrate the

whole method of procedure.

Discussion of Level Lines.

100. The following observations are recorded in the Report of

the United States Geological and Geographical Survey for 1873,

and are here supposed to be of equal reliability or weight :

1. Z, above O, 573.08 feet, by Coast Survey and canal levels, via

New York and Albany.

2. Z2 above Z,, 2.60 feet, by observations on surface of Lake Erie.

3. Z2 above (9, 575.27 feet, by Coast Survey and railroad levels, via

New York and Albany.

4. Z3
above Z2 , 167.33 feet, by railroad levels.

5. Z4 above Z3 , 3.80 feet, by railroad levels.

6. Z
4
above Z2 , 170.28 feet, by railroad levels, via Alliance.

7. Z4
above Z

5 , 425.00 feet, by railroad levels.

8. Z
5
above (9, 319.91 feet, by railroad and Coast Survey levels, via

Philadelphia.

9. Z5
above O, 319.75 feet, by railroad levels, via Baltimore.

The letters here have the following meanings :

O is the mean surface of the Atlantic Ocean.

Zl is the mean surface of Lake Erie at Buffalo.

Z2 is Cleveland city datum plane.

Z
3

is Depot track at Columbus, O.

Z
4

is Union Depot track at Pittsburg.

Z
5

is Depot track at Harrisburg.
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It is required to adjust these observations, and to find the

probable error of a single observation.

ist, Represent the unknown heights of Z Z Zy 2T
4,
and Z^

by z lt z2 , Sy z
4 ,
and z

s
. Then the observations give the obser

vation equations

z&amp;lt;

= 573-o8,

Z2 z
l
= 2.60,

z2 = 575- 2
7&amp;gt;

z
3
- z2 = 167.33,

*4
~ Z

l
= 3 80,

z4 z2 = 170.28,

Z
4
~ Z

S
= 425-0^

z
5
= 319.91,

2d, Form a normal equation for s, by multiplying each equa
tion in which z

t
occurs by its co-efficient in that equation, and

adding the products ;
and in the same way form a normal equa

tion for each of the other unknown quantities. This gives

22, Z2 = 57048,
z

l + 4Z2 ZT,
z
4

= 240.26,

Z2 + 2S
3
- Z4

= 163.53,

z2 z
3 + 324

- z
5
= 599.08,

- 2
4 + 3*5

= 214-66.

3d, The solution of these normal equations furnishes the

following values:

Zx = 572.81, Z2 = 575.14, 23 = 742.05,

24
= 745-43. zs = 320.03,

which are the adjusted elevations of the five points above

the datum O.
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4th, Substitute these values in the observation equations,

and find the residuals and their squares ;
thus :

No.
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so that the final elevation of Z2 may be written

** = 575- T 4 0.21,

and it is an even wager that the actual error in the value 575.14

is less (or greater) than the amount 0.21 feet.

101. For level lines of unequal precision the process of ad

justment is the same, except, that, before forming the normal

equations, each observation equation should be multiplied by
the square root of its weight. To illustrate, regard the above

nine observations as of unequal weight. The least trustworthy
is No. 9 ;

because it is not known that mean tide at Baltimore

is the same as the mean surface of the ocean, and its weight

may be taken as I. Nos. 3 to 8 inclusive are ordinary railroad

levels, and may, with reference to No. 9, be given a weight of 4.

Nos. i and 2, being the result of carefully conducted govern
ment and canal levels extending over many years, are the most

reliable of all
;
and a weight of 25 may be assigned them. The

observation equations are the same as before
; multiplying each

by the square root of its weight gives

53,
= 2865.40,

5*2 5*i
=

JS-00 *

2Z2
= 1150.54,

2Z
3
- 2Z2 = 334-66,

2
4
- 2Z

3
= 7.60,

2Z4 2Z2 = 340.56,

224 2Z
S
= 850.00,

2Z
5
= 639.82,

*5
= 3I9.75-

The normal equations now are

502! 2522 =
14262.00,

-
2521 + 3723

-
423

-
424 =

1015.64,
-

4*2 + 823- 424
=

654.12,

.

-
4Z2

-
423 + i22

4
-

425
=

2396.32,
-

424 + 925
= -100.61,
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and their solution gives

*i = 572.90.

Z
4
= 745-72,

= 57548,
= 320.25.

z
3
= 742.36,

Inserting these in the observation equations, the remainders

or residuals v lt v2 , etc., are found, and placed in the third column

below, their squares in the fourth, and the product of each

square by its corresponding weight in the fifth.

No.



102. DISCUSSION OF LEVEL LINES. 115

In order, lastly, to find the probable errors of the above

adjusted values, their weights must be determined. For in

stance, to find the weight of #
4, place the absolute term in

the fourth normal equation equal to A, and those in the other

normal equations equal to zero. Then the solution gives

z
4
= z^A, and accordingly the weight of #

4 is 6.62. Hence

the probable error of the value of ^
4

is

0-635

And in a similar way the probable error of the value of #a may
be found to be 0.15 feet.

102. For such simple cases as those just presented, the abso

lute terms in the normal equations might be represented by

letters, A,, A 2 , etc., and a general solution easily effected, which

would give at once all the weights and unknown quantities.

For instance, if the normal equations of Art. 100 are thus

written

22, Z2 = A i}

~ Z + Z s - z = A

the solution gives

512,
=

5 iz2 = i$A l + 26A 2 + 22^3 -f i8A
4 + 6^

5 ,

= ii A, -f 22^2 + 50^3 -I- 27^4 + gA s ,

= 3^1+ 6A2 + vA 5 + i 2A
4 + 4A 5 ,

= A L + 2A2 + $A3 -f 4A4 + 7^5,

where all the weights are at once seen, and from which the

values of the unknown quantities can easily be found.
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As indicated in Art. 99, the numerical operations may be
somewhat simplified by taking the unknown quantities as cor

rections to be applied to assumed elevations of Zu Z2 , etc.

Thus it is seen from the observations that 573 and 575 feet are

approximate elevations for Z
l
and Z2 . By writing, then,

elevation of Z, = 573 4- z
lt

elevation of Z2
= 575 -f z2 ,

elevation of Z
3
= 742 + z

3 ,

elevation of Z
4
= 745 + z

4,

elevation of Z
5
= 320 -f z

s ,

the following simpler observation equations are obtained from
the given data :

z
l
= 0.08,

Z2 Zi 0.60,

z2 = 0.27,

z
3
- z2

=
0.33,

Z
4

#
3 O.8o,

z
4

z2 = 0.28,

= o.oo,

= -
0.09,

From these the normal equations are formed, whose first mem
bers are the same as written above, and whose second mem
bers have the values A, 0.52, A 2

= +0.26, A
z
= 0.47,

A
4
= + ^oS, A

5 0.34. The solution of the normal equa
tions gives

z
t
= -

0.19, z2 = 0.14, 2
3
=

0.05, z
4
= 0.43, z

s
= 0.03 ;

and the final elevations are

Z, = 573.00
-

0.19 = 572.81,

Z2
= 575- + 0.14 = 575.14, etc.,

which are the same as found in Art. 100.
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Angles at a Station.

103. When two angles and also their sum are observed at a

station, the observed sum usually differs from the sum of the

two measured single angles. Let the observation of the first

angle give the result MIt of the second M2 ,
and that of their

sum My Then M, + M^ is greater or less than M
3 by a cer

tain discrepancy d. It is required to adjust the observations,

regarding the weights as equal, and to find the probable errors

of the adjusted values.

ist, Let z
l
and z2 be the most probable corrections to the

observed values M
l
and M2 , so that M, + z

l
and M2 + z2 are

the most probable values of the first and second angles. The
observation equations then are

*,) + (M2 + z2 )
= J/

3,

which reduce to

z
t
= o,

22 = O,

*, + z2 = M, - (M, + M2 )
= d.

2d, From these, the normal equations are

22, + z2 = d,

z
l + 202

= d.

3d, The solution of the normal equations gives

z
l
= ^d, and z2 = -Jv/,

for the most probable values of the corrections : hence the

adjusted values are

M* + \d,

M2 + Id,
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4th, The residuals are evidently the three corrections, the

sum of whose squares is \d
2

; then, from (32),

r =0.6 745yV7= 0.389^,

which is the probable error of a single observed value.

5th, By the method of Art. 75 it is easy to find that the

weights of the adjusted values of z
t and z2 are 1.5 : hence

their probable errors are

and evidently the probable error of the adjusted value of

z
t -f- z2 is also 0.318^.

104. When several angles are observed at a station, several

sums and differences of simple angles are often taken. For

example, the following are the angles observed at the Station

Hillsdale, on the United States Lake Survey ;
each being the

mean of nearly the same number of readings, and hence re

garded as of the same weight. (See Report of United States

Lake Survey, p. 449.)

No.
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.

The annexed figure shows the relative positions of the sta

tions and of the seven observed angles. It is required to

adjust the observed results, and to find their probable errors.

Ouincy

ittsford

ist, Let Z Zy Z^ and Zb be the required most probable
values of four of the simple angles as indicated in Fig. 7;
then the observation equations are

360 - (Zs

A = 44 25 4C

+ Z
3

=. 80 47 3

^3 = 36 21 51.996,

Z
4
= 91 34 24.758,

+ Z
3 )
= 279 12 27.619,

Z6 = 62 37 43-45&amp;gt;

+ Z6)
= i25 oo 18.808.

Assume the measured values of Z
f ,
Zv Z4,

and Z6 as approxi

mate, and let zlt zy 2^ and ^6 be the most probable corrections,

thus

Zt
= 44 2 5 4o&quot;.6i3+*I ,

^3 = 36 21 SI.996+S3 ,

34 24.758 + z4 ,

37 43.405 4- z6.

= 9 1

= 62
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Then, by inserting these values in the observation equations,
the following simpler observation equations are found :

z
t
= o,

*i + Z
3
= + 0.210,

Z
3
= O,

Z4 = O,

2j + %= 0.228,

26 = O,

z
l +z3

+ Z4 + z6 = 4- 0.420,

in which the right-hand members denote seconds only.

2d, The normal equations are now easily written, either by
the rule of Art. 48, or by the help of the algorithm of formulas

(10) and (u). They are

42 i -h 323 + z
4 4- z6 = + 0.402,

33, + 4*3 + z
4 4- 6 = 4- 0.402,

2, 4- z
3 4- 2Z

4 4- s6 = 4- 0.420,

2, H- z
3 4- 2

4 + 2z6 = + 0.420.

3d, The solution of these equations gives

2, = 2
3
= 4- o&quot;.022, Z

4
= Z6 = 0&quot;.I26.

The addition of these corrections to the approximate values

gives the most probable values of the angles Nos. i, 3, 4, and 6;

and from these, by simple addition, the most probable values of

Nos. 2, 5, and 7, are obtained. Thus, the adjusted values are

No. i = 44 25 4 o&quot;.635 = ,

No. 3 = 36 21 52.oi8=Z3 ,

No. 4 = 91 34 24.884 = Z
4 ,

No. 6 = 62 37 43-53 1 =
&&amp;gt;

No. 2 = 80 47 32.653 == Z, 4- Z3 ,

No. 5
= 279 12 27.347 = 360 (Zl 4- Z3 ),

No. 7
= 125 oo 18.932 = 360

-
(Z, 4- Z

3
4- Z4 -f &amp;lt;)
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4th, The differences between the observed and the adjusted

values are the residuals, which, with their squares, are thus

arranged :

No.



122 INDEPENDENT OBSERVATIONS. VI L

In order to find the probable errors of angles Nos. 2, 5, and 7.

it would be necessary to represent them by single letters, and

to form and solve another set of normal equations.

105. As an example of angles with unequal weights, the fol

lowing observations at North Base, Keweenaw Point, on the

United States Lake Survey, will next be considered :

No.
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From these, the normal equations are formed, either by the

rule of Art. 50, or by the help of the algorithm of formulas

(12) and (13). They are

202, -f 17^2 = + 5.78,

172, + 42Z2 + 6z
4
= +4.70,

6z2 -f- igz4 = i.08.

The solution of these equations gives

z, = + o&quot;.285,
z2 = + o&quot;.oo5,

z4
=&amp;gt;
- e .059.

Hence the following are the adjusted angles

No. i= 55 57 58&quot;-965,

No. 2 = 48 49 13.645,

No. 3 = 104 47 12.610,

No. 4 = 54 38 15.471,

No. 5
= 103 27 29.116.

To find the probable errors, the residuals are next obtained.

No.
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which is the probable error of an observation of the weight

unity. The probable error of the observed angle, No. 2, is,

then,

O. 71
r2 = -^ =

&quot;.o 7 .

The probable error of the final value of No. 2 must be less

than o&quot;.O7, since its weight is increased by the adjustment.

Empirical Constants.

1 06. One of the most important applications of the Method
of Least Squares is the deduction, from observations, of the

values of physical constants or co-efficients. In all such cases

a theoretical formula or law is first established, which contains

the co-efficients in a literal form
;
and this law serves to state

as many observation equations as there are observations. The
method of procedure is then exactly the same as that outlined

in the first article of this chapter. The precision of the values

deduced for the constants depends, of course, upon the precision

and number of the observations which enter the discussion.

As an example, take the determination of the ellipticity

of the earth by means of experiments on the length of the

seconds pendulum. In 1743 Clairaut deduced the following

remarkable law :

s = S + S(\k -/)sinV,

in which 5 is the length of the seconds pendulum at the

equator, and s its length at any latitude /, while k is the ratio

of the centrifugal force at the equator to gravity, and f is the

fraction expressing the ellipticity of the earth. This may be

written

s = S + T^sin2
/.
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Now, by measuring s at two different latitudes, two equations
would result, from which values of S and T could be found

;

and, by measuring s at many different latitudes, many equa
tions would result, from which the most probable values of 6&quot;

and T may be found. The following, for instance, are thkteen

observations, taken by Sabine in the years 1822-24:

Place.
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And in like manner the following thirteen observation equations
are stated :

39.21469 = S -\- 0.96884027:

39- 20335 = S + 0.92893047:

39.19519 = S -{- 0.89041207:

39.17456 = S + 0.79995447:

39.13929 = S 4- 0.61279667:

39.10168 = S + 0.42543857:

39.03510 = S + 0.09482867:

39.01884 = S + 0.03414737:

39.01997 = S + 0.02180237:

39.02074 = S 4- 0.00005157:

39.01214 = S 4- 0.00194647:

39.02410 = S -\- 0.01903387:

39.02425 = S + 0.05052017:

The normal equations formed from these are

508.18390 = 13.0000006&quot; 4- 4.848702^

189.94447 = 4.8487026&quot; 4- 3-7 4394?;

whose solution gives

S = 39.01568 inches,

T = 0.20213 inches,

as the most probable values that can be deduced from the thir

teen observations. Hence the length of the seconds pendulum
at any latitude, /, may be written

s = 39.01568 4- 0.20213 sin2
/.

The values thus deduced for 5 and T are empirical constants,

To find from them the ellipticity/, it is easily seen that
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and, as the value of k is known to be ^ that of /is

/ 0.0086505 0.0051807 = ^gg-^

If desired, the precision of the constants 5 and T may be

investigated by determining their weights and probable errors,

and from these the precision of the value of / may also be

inferred.

107. When two quantities x and y are connected by the

relation y Sx -f- T the method of the last article can, in

strictness, only be applied to find the most probable values of

5 and T when the observed values of x are free from error. If

x is liable to error as well as y, the following method may be

used.* First let the value of 5 be found, supposing that x is

without error, and let this be called S
t

. Secondly, let the

value of 5 be found regarding y as without error, and let this

be called 52
. Let each observed value of x have the weight /&amp;gt;,

and each observed value of y have the weight unity. Then

the most probable value of 5 is found by solving the quadratic

equation

and, if n be the number of pairs of observations, the formula

gives the most probable value of T. The following numerical

example will illustrate the method.

In order to determine the most probable equation of a cer-

*
Report U. S. Coast and Geodetic Survey, 1890, p. 687.
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tain straight line the abscissas and ordinates of four of its

points were measured with equal precision, giving

y = 0.5, 0.8, i.o, and 1.2.

x = 0.4, 0.6, 0.8, and 0.9.

First, supposing that the values of x are without error, the

four observation equations are written :

0.5 = 0.46- + T,

0.8 = 0.65+ T,

i.o = o.85+ T,

1.2 = 0.96&quot;+ T.

And then, forming and solving the normal equations, there is

found 5, 1.339. Secondly, supposing that the values of y
are without error, the equation of the line must be written in

the form

and the observation equations are

0.4 = 0.5*7+ K,

0.6 = 0.8 7+ V,

0.8 = i.o*7+ V,

0.9 = i.2*7+ V\

from which the normal equations are derived, and by their

solution U 0.7385, or 5, = 1.354.

These values of 5, and 5, give the quadratic equation

5 0.6075 I = o, whence 5&quot;
= 1.348, and then T is found

to be 0.035, and accordingly

y = 1.348*
-

0.035

is the most probable equation of the line as derived from the

four pairs of observations.

107 . The determination of the elements of the orbit of a

comet or planet is another instance of the deduction of em

pirical constants. Here the observed quantities are the right
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ascension and declination of the body at various points in its

orbit. Through any three of these points a curve may be

passed, and an orbit computed by the formulas of theoretical

astronomy. The problem, however, is to determine the most

probable orbit by the use of all the observations.

The first step, after collecting and reducing the observations,

is to select a few favorably situated, and from them to compute
the approximate elements of an elliptical or parabolic orbit, as the

case may require. With these approximate elements, the places

of the body are computed for as many dates as there are obser

vations, and the differences between the computed and observed

places found. A theoretic differential formula is next estab

lished for a difference in right ascension, and another for a

difference in declination, in terms of unknown corrections to

the assumed elements, and of co-efficients that may be com

puted from the observations. Each observation thus furnishes

a difference, and each difference an observation equation, whose

unknown quantities are the corrections to the approximate ele

ments of the orbit. From the observation equations the normal

equations are derived and solved, and the most probable set of

corrections found. Lastly, the application of these corrections

to the approximate elements furnishes the most probable ele

ments that can be deduced from the given observations.

The process thus briefly described is very lengthy in its

actual application. For instance, in Hall s determination of

the elements of the orbit of the outer satellite of Mars * there

are forty-nine observation equations, each containing seven

anknown corrections, and forty-nine others, each containing
six. From these the seven normal equations were formed, and

by their solution the most probable values found for the correc

tions. The precision of the elements of the orbit was also

deduced by computing the probable errors of the corrections.

* Hall s Observations and Orbits of the Satellites of Mars
; Washington, 1878.
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Empirical Fonmilas.

108. The case of the last article is that of a rational formula

with empirical constants. An empirical formula, on the other

hand, is one assumed to represent certain observations, and

which is not known to express the law governing them. The
constants in such formulas are also best determined by the

application of the Method of Least Squares.

The first step in the establishment of an empirical formula

is to plot the given observations, taking one observed quantity
as abscissas, and the other as ordinates. Let y and x be the

two quantities between which an empirical formula is to be

established. The plot shows to the eye how y varies with x.

If y is a continually increasing function of x, or if the curve

resembles a parabola, the general equation

(40) y = S -f Tx + Ux2 + Vx* + etc.,

may be written to represent the relation between y and x. This

equation applies to a large class of physical phenomena, such

as relations between space and velocity, volume and tempera

ture, stress and strain, and other similar related quantities.

The letters S, T, U, etc., represent constants whose values are

to be determined from the observations.

Another large class of phenomena may be represented by
the general equation

(41) y = S
m

tf sin 2oc + t/ cos 2X + etc.,m m

in which, as x increases, y passes through repeating cycles. As

such may be mentioned the variation of temperature through

out the year, the changes of the barometer, the ebb and flow

of the tides, the distribution of heat on the surface of the earth

depending on latitude, and, in fact, all phenomena which repeat
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themselves like the oscillations of a pendulum. The letters

S, T, [7, etc., represent constants which are to be found from the

observations ;
while m is the number of equal parts into which

the whole cycle is divided, and must be taken in terms of the

same unit as x. If the several cycles are similar and regular, only

the first three terms are required to represent the variation.

Other general empirical formulas than (40) and (41) are also

employed in discussing physical phenomena. Exactly what

formula will apply to a given set of observations, so as to agree

well with them, and at the same time be of use in other similar

cases, can only be determined by trial. The investigator must,

from his knowledge of physical laws, assume such an expression

as seems most plausible, and then deduce the most probable

values of the constants. The comparison of the observed and

calculated results furnishes the residuals, from which, if desired,

the probable errors may be deduced. When several empirical

formulas have been determined for the same observations, that

one is the best which furnishes the smallest value for the sum

of the squares of the residuals.

109. Consider as a first practical example the deduction of the

equation of the vertical velocity curve for the observations given

on p. 244 of the second edition of the &quot;

Report on the Physics

and Hydraulics of the Mississippi River,&quot; by Humphreys and

Abbot. The grand means of the measurements give the following

results for the velocities at different depths below the surface :

At surface, 3.1950 feet per second.

At o.i depth, 3.2299 feet per second.

At 0.2 depth, 3.2532 feet per second.

At 0.3 depth, 3.2611 feet per second.

At 0.4 depth, 3.2516 feet per second.

At 0.5 depth, 3.2282 feet per second.

At 0.6 depth, 3.1807 feet per second.

At 0.7 depth, 3.1266 feet per second.

At 0.8 depth, 3.0594 feet per second.

At 0.9 depth, 2.9759 feet per second.
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2.9 3.0 3.1

0.1

0.2

0.3

0.4
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0.6

0.7

0.8

These observations may be plotted by dividing a vertical line

representing the depth of the river into ten equal parts, through
the points of division drawing
horizontal lines, and laying
off upon these the observed

velocities. On the annexed

figure the points enclosed

within small circles represent
the observations. Each hori

zontal division of the diagram
is o.i feet per second, and

each vertical division is one-

tenth of the depth.

Let y be the velocity at

any point whose depth below

the surface is x, the total

depth of the river being unity, and assume that three terms of

formula (40) will give the relation between y and
x&amp;gt;

or that

y = S 4- Tx 4- Ux2
.

This is equivalent to assuming that the curve of vertical veloci

ties is a parabola, with its axis horizontal.

The observations furnish the values of y for ten values of x ;

and thus, for determining S, T, and *7, there are the following

ten observation equations :

3.1950 = S 4- o.o7*4- o.oo*7.

3.2299 = S 4- o.i 7* 4- o.oi*7.

3.2532 = 6&quot; 4- 0.27*+ 0.04*7.

3.261 1 = S 4- O-37* 4- 0.09*7

3.2516 = S + 0.47*4- o.i6*7.

3.2282 = S 4- 0.5 7* 4- 0.25*7.

3.1807 = S 4- 0.67*4- 0.36*7.

3.1266 = S + o.*]T + 0.49*7.

3.0594 - S 4- o.87*4- 0.64*7.

2.9759 = S 4- 0.97*4- o.l
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From these the following three normal equations are found :

31.761600 = lo.oo-S&quot; + 4.500T -\- 2.85006^.

14.089570 ==
4.506&quot; + 2.850^+ 2.0250^.

8.828813= 2.85^4- 2.025T+ 1.5333^-

And their solution gives

S= +3- I 95 I
3&amp;gt;

r= +0.44253, #=-0.7653.

Accordingly, the empirical formula of vertical velocities is

y = 3-195 T 3 + 0.442530?
-

0.7653*%

where y is the velocity in feet per second at any decimal depth
x. The curve corresponding to this formula is drawn on the

above diagram.

The following is a comparison of the observed velocities

with those computed from this empirical formula :

X.
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The sum of the squares of the residuals is here 0.000057, and

hence

= - 6
745y

~ oooo c 7
iL! = o.OOlQ

10-3

is the probable value of a residual, or the probable difference

between an observed and computed velocity. The agreement
between the parabola and the observed points is very close.*

no. As a second example, consider the deduction of a

formula to express the magnetic declination at Hartford,

Conn., for which place the following observations are given

on p. 225 of the United States Coast and Geodetic Survey

Report for 1882 :

Date.
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may be roughly represented by the annexed figure, where the

ordinates to the curve show the relative values of the declina

tion at the respective years. Formula (41) is hence applicable

to the discussion of the above observations.

Let y be the magnetic declination at the time x, and assume

the empirical relation

m m

Here there are four constants, S, T, T
,
and m, to be found by

the Method of Least Squares from the given observations.

The only practical way of procedure is to assume a plausible value

of m, and then to state the observation equations and normal

equations, from which values of S, T, and T may be deduced.

Again : assume another value of m, and repeat the computation,

thus finding other values for S, T, and T . If necessary, the

computation is to be repeated for several values of m ; and for

each formula thus deduced the residuals, or differences between

the observed and computed values of y, are to be found. Then

that value of m and that formula is the best which makes the

sum of the squares of the residuals a minimum.

360
Take for m the value 288 years ;

then - - is 1.25, and the

formula is

S + T sin i.2$x + T cos 1.25* = y.

Let x be the number of years counted from the epoch, Jan. I,
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1850, and let all angles be expressed in degrees and decimals;

then, for the first observation,

x 1786.5 1850.0 = 63.5 years,

1.25^ = 79.4 degrees,

sin 1.25.*
= 0.983,

cos i.2$x = +0.184,

y = 5.42 degrees,

and hence the first observation equation is

S - 0.983^ + 0.1847&quot;
=

5.42.

In like manner the following tabulation is made

No.
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Hence the empirical formula is

y = 8.o6 -f- 2.6osin 1.25^ i.29cos 1.25.*.

This may also be written

y = +8.o6 -f 2 . 9osin(i.25^- 26^4),

which is a more convenient form for discussion.*

The following is a comparison of the observed decimations

with those computed from this formula :

Date.
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in. Lastly, consider the deduction of a formula to represent

certain experiments, made by Darcy and Bazin, on the flow of

water in a rectangular wooden trough lined with cement. The
width of the trough was 1.812 meters, and its slope 0.0049.

Water was allowed to run through it with varying depths ;
and

for each depth the mean velocity was measured, and the hydrau
lic radius of the water-section computed by dividing the wetted

perimeter into the area of the section. The following are

the results, the hydraulic radius h being given in meters, and the

mean velocity m in meters per second :

No.
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The twelve observation equations furnish the two normal equa

tions, and their solution gives

/ = 0.572, logs = 0.7767, .. s = 5.98.

Therefore the empirical formula

m = 5.98/-57
2

is the best of the assumed form that can be derived from the

nine experiments.

112. Problems.

i. The following levels were taken to determine the elevations of five

points, T, U, W, X, and Y, above the datum O :

A above W 632.25.

X above Y = 211.01.

Y above U 596.12.

Y above W 427.18.

T above O 115.52.

U above T 60.12.

U above O = 177.04.

^ above T= 234.12.

W above (7= 171.00.

What are the adjusted elevations?

Ans. T= 115,61, U= 176.95, etc.

2. Four angles are observed at a station, and also their sum. The

observed sum differs from the sum of the four observed parts by the

discrepancy d. What are the adjusted values?

3. Adjust the following angles, taken at the station Moodus, and find

the probable errors of the adjusted values.

No.
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4. The following observations of the temperature at different depths

were taken at the boring of the deep artesian well at Crenelle in France,

the mean yearly temperature at the surface being io.6o centigrade :

1. Temperature at a depth of 28 meters 11.71 degrees.

2. Temperature at a depth of 66 meters 12.90 degrees.

3. Temperature at a depth of 173 meters = 16.40 degrees.

4 Temperature at a depth of 248 meters = 20.00 degrees.

5. Temperature at a depth of 298 meters = 22.20 degrees.

6. Temperature at a depth of 400 meters = 23.75 degrees.

7. Temperature at a depth of 505 meters = 26.45 degrees.

8. Temperature at a depth of 548 meters = 27.70 degrees.

Deduce from these observations the empirical formula

/ = 10.6 -|- 0.041 5-r o.oooo 1 93.*
2
,

where t is the temperature at a depth of x meters.

5. Gordon s formula for the ultimate strength of columns may be

written
S

in which c is the crushing-load per unit of area of cross-section, / the

ratio of the length of the column to its least diameter, and 6&quot; and T are

constants to be found by experiment. Determine the best values of

these constants for the following four experiments on wrought-iron

Phoenix columns :

c - 34650, 35000, 36580, 37030.

j 42, 33, 24, 19.5.

6. From several census records of the population of the United

States deduce an empirical formula showing the population for any

year.
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CHAPTER VIII.

CONDITIONED OBSERVATIONS.

113. The general method of adjusting conditioned observa

tions has been deduced in Arts. 56, 57, and that of investigating

the precision in Arts. 77, 78. The following is the process :

ist, Having given ;/ observations upon q quantities subject

to n rigorous conditions, the first step is to represent the quan
tities by symbols, and state ;/ observation equations and n con

ditional equations. Generally it will be found most convenient

to take the unknown quantities as representing corrections to

assumed approximate values, and to state the observation and

conditional equations in terms of these corrections.

2d, From the ;/ conditional equations find the values of n

unknown quantities in terms of the remaining q n quanti

ties, and substitute these values in the n observation equations,

each of which then represents an independent observation.

3d, Adjust these n observation equations by the method of

Chap. VII, and find the most probable values of the q n

quantities. Then, by substitution in the conditional equations,

the most probable values of the remaining n1

quantities are

known.

4th, Insert the adjusted values in the n observation equa

tions, and find the residuals, and then, from (33), the probable

error of an observation of the weight unity. If desired, the

weights of the adjusted values may be found by Art. 75, and

their probable errors by (31).
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114. The special method of correlatives, which is particu

larly valuable in the adjustment of geodetic triangulations, has

been explained in Art. 58. In order to apply it, the local

adjustments should first be made; so that for each quantity,

z lt z2 ... z
g ,

a value, J/n M2 . . . Mg ,
called the observed value,

is known. The numbers q and n are hence equal. The fol

lowing are the steps of the practical application :

ist, For the rigorous conditions write ;/ conditional equa

tions, as in (14). Substitute in these the observed values, Mlt

M2 . . . Mq ,
for the quantities z iy z2 . . . z

g ;
and let dlt d2 . . . d

q

be the differences or discrepancies that arise.

2d, Assume n new unknown quantities, or correlatives,

Klt K2 . . . Kn ,
and write the normal equations (16). Solve

these normal equations, and thus find the values of the

correlatives.

3d, From (15) find the corrections v lt v2 . . . vg , which, when

applied to the observed values Mu M2 . . . Mq , give the most

probable adjusted values.

4th, Compute the sum ^pv
2

,
and from (34) find the proba

ble error of an observation of the weight unity. The probable

error of any observed M is then easily found from (31), and

that of the corresponding adjusted value is somewhat smaller,

since the weights are increased by the adjustment.

Angles of a Triangle.

115. When the three observed angles of a plane triangle are

of equal weight, it is easy to show that the correction to be

applied to each is one-third of the discrepancy between their

sum and 180. The following is the proof by the method of

correlatives :

ist, Let Mlt M2 ,
and M

3
be the observed values, and z lt sn
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and z
z
the required most probable values. The conditional

equation is

2i + z2 4- ^
3

180 = o.

Substitute in this the observed values, and it does not reduce

to zero, but leaves a small discrepancy d ; thus

M, + M2 -f J/
3
- 180 = d.

By comparison with (14) it is seen that a, = a2
=r a

3
= + I.

2d, Take K as the single correlative. The weights are all

equal, or/ = i. From (16) the single normal equation is

\otd\.K -f d = o, or 3^ + &amp;lt;/
= o,

from which K =
|&amp;lt;/.

3d, From (15) the three corrections now are

d d d
Vi= , V2 = , V

3
=

,333
and, accordingly, the most probable values of the three angles
are

2, = Ml , zz = A~
,

2
3
= M\ - -.333

4th, The sum of the squares of the residuals is
,
and hence

by (34) the probable error of a single observed angle is 0.39^.

By working the problem according to the general method of

Art. 113, it may be shown (as in Art. 103) that the probable
error of an adjusted angle is 0.32^.

116. When the three observed angles of a plane triangle are

of unequal weights, it is easy to show that the corrections to be
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applied are inversely as the weights. For instance, take the

following numerical case :

MI = 3 6 25 47&quot;,
with weight 4

MI = go 36 28, with weight 2

M
i&amp;gt;

5 2 57 57, with weight 3

Sum = 180 oo 12&quot;

1st, Take ziy z2 ,
and js

3
as the most probable values; then,

as before, the conditional equation is

*i 4- z2 4- 3
1 80 = o.

The discrepancy is 12&quot;. To compare with (14), (15), and (16),

o
I
=ak = o

3
= + i

l /, = 4 A = 2, and /3
=

3.

2d, Only one correlative is necessary ;
and from (16) the

single normal equation is

and hence K ^ = 11.08.

3d, From (15) the corrections now are
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tion of the weight unity. By (31) the probable errors of the

observed values are found to be

r* = 3&quot;. 89, r2
=

5&quot;. 50, r
3
=

4&quot;-49,

and the probable errors of the adjusted values are somewhat

less than these.

The adjustment of the angles of a spherical triangle differs

from that of a plane triangle only in the introduction of the

spherical excess into the conditional equation ;
thus s -\- t + u

= 1 80 -(- spherical excess.

Angles at a Station.

117. When n angles, and also their sum, are observed at a

station, and the weights are all equal, it is easy to show, as in

Art. 103, that the correction to be applied to each observed

angle is - th of the discrepancy between the observed sum

and the sum of the observed single angles.

When n angles, which close the horizon, are observed at a

station, and the weights are equal, it is easy to show, as in

Art. 115, that the correction to be applied to each observed

angle is -th of the discrepancy between 360 and the sum of

the observed angles.

When angles at a station close the horizon, or are observed

by sums or differences, the adjustment may be effected, either

for equal or unequal weights, by the method of Art. 713, or by
that of Art. 114. The former will always reduce to the method

of independent observations, as exemplified in Arts. 103-105.

118. As an example of the application of the method of cor

relatives, consider the observations of Art. 104. Represent the

most probable values of the seven angles by # 22 . . . zr
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From Fig. 7 the following conditions are seen :

z,
- z2 4- 2

3
= o,

Z, 4- Z
3 4- 2

4 -f 26 4- 2; 360 = O.

By substituting in these the observed values, the following dis

crepancies are found :

d
l
= 0.210, d2

= 0.648, d
3 0.420.

Take Klt K2 ,
and A&quot;

3
as the correlatives to be determined.

By comparison with (14), it is seen that

a
i
= 4- I, a2 I, a

3
= 4- I, 4

= a
s
= 06 = a

7
= O,

7i
=

73
=

74
=

76
= 77

== 4-i, y2
=

75
= o.

All weights are unity. The three normal equations then are,

from (16),

T
&amp;gt;

K
l 4- 2AT

3
0.210 = o,

4- 4^2 4- 3^3 0.648 = o,

2A
, 4- 3A 2̂ 4- 5^3 0.420 = o,

and their solution gives

A&quot;,
= 4- 0.167, A&quot;2 =4- 0.271, A^j

=
0.145.

From (15) the corrections now are

v l
= 4- AT, 4- A^ = 4- o&quot;.o22,

v2
= - K, 0.167,

z/
3
= 4- A^ 4- A&quot;

3
= 4- 0.022,

^4 = 4- A&quot;2 4- Aj = 4- 0.126,

v
s
= - K2

-

0.271,

v6 = 4- K2 4- A 3
= 4- 0.126,

v
j
= 4- A&quot;2 4- A 3

= 4- 0.126,
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and if these be applied to the observed values Mlt M2 . . . Mr

the adjusted values are found the same, within one or two thou

sandths of a second, as in Art. 104, the slight difference being

due to the neglect of the fourth decimal places.

Angles of a Quadrilateral.

119. In a quadrilateral WXYZ, the two single angles at

each corner are equally well measured. It is required to ad

just them, so that the sum of the three angles in each triangle

shall equal 180, and the sum of

the four angles of the quadrilater

al shall equal 360.

Let the measured angles at the

corner W be denoted by Wl
and

W2t and similarly for each of the

other corners, as shown in Fig. 10.

Let w, and w2 be corrections to

be applied to Wl
and W2 in order

to give the most probable values,

Wv + w
t
and W2 + wv

Fig.10,

In order to avoid writing identical equations, select any

corner, as W, and take the three triangles, WXZ, ZWY, and

XYW which meet at that point, as the three triangles for cor

rection. Evidently, if the angles of these triangles add up to

1 80, those of the fourth triangle will also. The three con

ditional equations now are

-f

^ o,

2
= o,

&amp;lt;n which dlt d2y and d^ denote the differences or discrepancies
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between the sum of the measured angles of the triangles and
the theoretic sum 180; thus, for example,

^ + W2 + X, + Z2
- 180 = dL .

From the three conditional equations the values of the eight
corrections are to be found, either by the method of Art. 113
or by that of Art. 114. The latter will be the shorter. As
sume, then, three correlatives, Ku K2J and Ky and for each
correction write a correlative equation, thus

-t- K, + K^ = Wi,

= Xl

= x2 ,

the co-efficients of K
l being the co-efficients of the corre

sponding unknown quantities in the first conditional equation,
and so on. From these equations the three normal equa
tions are

4AT, + 2K2 + 2
3̂ + d, = o,

2K
l H- ^K2 + d2

= o,

2K, -h 4-^3 +^3 = 0,

whose solution gives the values of K K2 ,
and K

3 ; and, insert

ing these in the correlative equations, the following values of

the corrections are found :

w l
= z2 = l(2dl + d2 &amp;lt;/

3 ),



I2G. ANGLES OF A QUADRILATERAL. 149

and the addition of these to the observed angles gives the

adjusted values.

For example, let the following angles be given :

^ = 41 58 47&quot;, * = 49 i7 30&quot;,

ZF2 =r64 08 34, *2 = 53 53 5 1 ,

^ = 36 34 i5
= 46 49 J 6,

^2 = 29 59 51, ^2 = 37 18 1 8.

Here the discrepancies are

4 = ^ 4- W2 +Xl +Z2
- 180 = -

6&quot;,

&amp;lt;/a
= JF2 + xt + 2̂ + y, - i so = + 10,

^ = f^ + F2 + Z, 4- Z2
- 1 80 = +12.

Then, by the above formulas, the corrections are

w, = z2 = + i&quot;.25,
o/2 = ^ = + i&quot;.75,

*3 =^i= 6.75, y2
= ^ = 7.25,

so that the adjusted values are

Ws +w t
= 41 58 48&quot;.2 5 ,

Yt +ys
= 49 i/ ^&quot;-ZS*

W2 +w2
= 64 08 35.75, K2 +j2

= 53 53 43.75,

X, + x, = 36 34 16.75, Zj + z, = 46 49 08.75,

X2 + x2
= 29 59 44.25, Z2 + 22 = 37 18 19.25.

These angles now fulfil all the geometrical conditions required

in the statement of the problem, and are, furthermore, the

most probable angles.

1 20. If the large angles at the corners are measured as well

as the single angles, the most convenient method of procedure

is, first to make the station adjustment at each corner, and then,

with the eight single angles, to make a further adjustment, as in

the last article. The following is an example illustrating the
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steps of the process for the case of unequal weights. Let the

twelve measured angles be

W = io6o7 27&quot;, weight 3, Y = 103 n
15&quot;, weight 2,

Wl
= 41 58 47, weight 3, Yl

= 49 1 7 30, weight 2,

fF2 = 64 08 34, weight 3, Y2
= 53 53 51, weight 2,

Jf = 66 34 03, weight i, Z = 84 07 30, weight 4,

^&quot;i
= 36 34 21, weight i, Z, = 46 49 16, weight i,

^2 = 29 59 45, weight i, Z2
= 37 18 18, weight 2.

First, by Art. 117, make the station adjustment at each corner,

and obtain the following results :

W, = 41 5 8/
49&quot;-&amp;gt;

weight f&amp;gt;
X = 49 17 28

&quot;-&amp;gt;
weiSht 3,

ZF2 = 64 08 36.0, weight f, F2
= 53 53 49.0, weight 3,

Xi 36 34 20
-&amp;gt; weight |, Zt

= 46 49 13.7, weight ,

X2
= 29 59 44.0, weight |-,

Z2
= 37 18 16.9, weight-

1
^.

Next let w
t ,
w2 , etc., be corrections to these values in order to

satisfy the geometrical icquirements of the figure. Then, as

in the preceding article, the three conditional equations are

W2 + ^ + *2 + 7 t + 8.0 = O,

Wi + JF2 + 2i + 22 + 8.6 = o.

From (15) the eight correlative equations are

w2
=

. K, ),

K* ),
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From (16) the three normal equations now are

(l+f +f +T5
4)^. + (J + 3)AT2 + (f + A)^3+ i-9

= 0,

+ s.o = o,

8.6 = 0.

and their solution gives the values

K, = +6.99, ATa = -7.53, K
z
= -9.43,

from which the following corrections are found :

w, = -o&quot;.5,
xt
= -0.4, ^ = -2.5, 2, = 4.1,

w2
= -

o.i, #2
= -5.0, }&amp;gt;

2
= -3.1, s2 = -0.9.

The final adjusted values of the single angles now are

2̂
= 64 08 35.9, Y2

= 53 53 45.9,

X&amp;gt;
= 36 34 19.6, Z, = 46 49 09.6,

&= 29 59 39.0, Z2 = 37 18 1 6.0.

The adjusted values of the large angles are now obtained by
simple addition of the single angles, and are

W= 106 o 7 24 &quot;.4,
y= 103 ii n&quot;^,

X = 66 33 58.6, Z= 84 07 25.6,

whose sum is exactly 360 degrees.

121. In geodetic surveys where the sides of the quadrilateral
are many miles in length, the spherical excess must be con

sidered in stating the conditional equations for the three tri

angles. In such work a fourth conditional equation must also

be introduced in order to insure that the length of any side

shall be the same through whatever set of triangles it be com

puted. The development of the calculations for such cases

belongs properly to works on geodesy, and will not here be dis

cussed. Detailed examples of the method may be seen in
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Schott s article on the adjustment of the horizontal angles of a

triangulation in the United States Coast Survey Report for

1854, in Clarke s Geodesy (Oxford, 1880), and in many German
works on higher surveying.*

Simple Triangulation.

122. In the adjustment of a simple triangulation the method
of procedure is essentially the same as for a quadrilateral.

First, the adjustment of the angles at each station should be

made, and then the resulting values further corrected, so as

to satisfy the geometrical requirements of the figure. This

method is not strictly in accordance with the fundamental

principle of Least Squares. By the station adjustment a cor

rection, v^ is found for each angle, and by the figure adjustment
another correction, v2 ;

so that the total correction is v
l + vs .

The fundamental principle for observations of equal weight

requires that ^(v l -+- ^2 )

2 should be made a minimum in order to

obtain the best values of the corrections, while by the method

pursued Zv? is made a minimum
in the first adjustment, and 2? 2

2

a minimum in the second. The

reason for deviating from the

strict letter of the law is, that

the general method of determin

ing the total equation at once is

too laborious, owing to the large

number of conditional equations involved. Usually also the

difference between the final results of the two methods will be

small. In the next article will be given a comparison of the

two methods as applied to a simple case.

* See also Merriman s Elements of Precise Surveying and Geodesy.

New York, 1899.
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123. The following observations were made to determine

the distance between the non-intervisible stations C and D
by means of a measured base AB :

BAG = 27 09 05^.5,

BAD= 51 34 35.5,

CAD = 24 25 27.8,

ABD= 70 08 32.1,

ABC = 128 29 07.5,

DBC= 58 20 38.4,

ACB =24 21 46.0,

ADB= 58 16 50.8.

By the strict method of Art. 113 or Art. 114 the four condi

tional observations are written, one for each of the points A
and B, and one for each triangle, and the adjusted values found

as given in the second column of the following table :

Observed.
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By the shorter method the local adjustment at A and B is

first made, giving the results

BAG = 27

BAD= 51

ABD = 70

ABC = 128

09 06&quot;. 2, weight 1.5,

34 34.8, weight 1.5,

08 31.1, weight 1.5,

29 08.5, weight 1.5.

The triangles ABC and BAD are next separately adjusted,

using these four angles and those at C and D. The results are

Observed.
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with accuracy th:ir relative heights, a levelling instrument was

set up between A and B, and readings taken upon a rod held

at those points, with the results,

On rod at A, 8.7342 feet, mean of 12 readings.

On rod at B, 2.3671 feet, mean of 9 readings.

The instrument was then moved to a point between B and C9

and the observations taken.

On rod at B, 5.0247 feet, mean of 7 readings,

On rod at C, 11.2069 feet, mean of 4 readings.

Lastly, the level was set up between C and A, and the rods

observed.

On rod at C, 0.4672 feet, mean of 5 readings,

On rod at A, 0.6510 feet, mean of 3 readings.

It is required to find the adjusted values of these readings, the

most probable differences of level between the points, and the

probable error of a single reading on the rod.

First arrange these measurements as they would be written

in an engineer s level-book, and, assuming the elevation of A
as o.o, find the heights of the other points.

Station.
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station
;
thus

7
B

g
denotes that the .back sight on B has a weight

of 7, and the fore sight one of 9. Regarding the elevation of

A as o, that of B comes out 6.3671 feet, that of C, 0.1849 ^eet
5

and, on returning to the starting-point, it is found that A is

o.oou feet, instead of o as it ought to be.

Represent the back sights upon A, B, and C by Z,, Z3 , and
Z

5 ,
and the fore sights upon B, C, and A by Z2 ,

Z
4 ,
and Z6,

and let z lt zy zy z2 ,
z
4 ,
and z6 be corrections to be applied to

those observed values. The observation equations then are

z
l o, weight 12, z2 = o, weight 9,

z
3
= o, weight 7, z

4
= o, weight 4,

z
s
= o, weight 5, 2fe

= o, weight 3,

and the conditional equation is

= o.oou.

From the conditional equation take the value of #
4 ,
and insert

it in the observation equations, which, after multiplication by
the square roots of their respective weights, become

V/I2 Z, = O,

V/^7

z
3
= o,

y/5 z
5
= o,

3 ^ = o,

V/3 26 = o,

2Z1 -}- 22
3 + 22

5
2Z2 2Z(&amp;gt;

= O.OO22.

From these the normal equations (Art. 48) are

162, + 4^3 + 4^5
~ 4Z2 4*6 = 0.0044,

40, -f 1 12
3 + 4^5 4^2 425 = 0.0044,

42 t + 4^3 -f 9^5 4^ 42& 0.0044,

42, 423 4^5 + 13^ 4- 4^6 = 4- 0.0044,

42, 423 4zs 4- 4^2 4- 7^6
= + 0.0044,
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the first being the normal equation for z lt the second for zv the

third for zy the fourth for z2 ,
and the fifth for z6 . The solu

tion gives the following results :

z l
= 0.00008,

z2 = -f o.ooon,

z
3
= 0.00014,

z
4
= 4- 0.00024,

Z
s
= O.OOO2O,

26 = + 0.00033.

Applying these to the observed values, the adjusted results are

Station.
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by the same law of propagation of error as linear measure-

ments (see Art. 91). Each difference

of level should hence be assigned a

weight inversely proportional to the

length of the line between the two

points. For each triangle or polygon
of the network, there is the rigorous

condition that the sum of the differ

ences of level shall be zero. From
these conditional equations, corrections

to the observed differences of level are

determined by the method of Art. 1 14.

As an example, consider the follow

ing eight differences of level forming
three closed figures, ABE, BCFE, and

CDF:

Fig,12

No.
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Let // 7?2 , etc., represent the most probable differences of

level. Then the three conditions are

for ABE, /i, h
1 h% = o,

for BCFE, h2
-

h^
- /i6 + h

7
= o,

for CDF, h
z
- h

4 + h
s
= o.

Let vlt v2, etc., be the most probable corrections to the observed

differences of level, so that

h, 120.2 + v lt h2
= 230.6 + v2 , etc.

Then the three conditional equations become

V, V
1 Vs 1.0 = O,

v2 v
s
- v6 + v

7 + 1.5
= o,

^3 ^4 -f- ^5 1.2 = O.

From these the correlative equations are written, the weight
of each v being taken as the reciprocal of the corresponding
distance :

vs + 4.0^,,

v2 -f y.2A 2 ,

Next the three normal equations are

15.8^ 3-sA 2 i.o = o,

3-.SA&quot;! f iy.5A 2 2.oA&quot;
3 + 1.5

= o,

- 2.oA 2 + i3-3A 3̂
- 1.2 o,

and the solution of these gives

Ki = -f- 0.04848, A 2
=

0.066855, A 3 -f 0.08017
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Lastly, by substituting these in the correlative equations, the

corrections are found, which are given in the third column of

the following table, while in the fourth are the adjusted results.

No.
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2. In a spherical triangle XYZ the three measured angles are

X=93 48 is&quot;.22,
with weight 30,

Y= 51 55 o.i 8, with weight 19,

Z 34 16 49.72, with weight 13.

The spherical excess is 4&quot;.O5.
What are the adjusted angles?

3. In a quadrilateral WXYZ, the following angles, all of equal weight,

are measured, and it is required to adjust them.

W = 1 06 07 30&quot;,
Fi = 49 17 2

3&quot;

Wl = 41 58 47, Y* = 53 53 5

W2 = 64 08 34, Z =84 07 18,

A = 66 34 09, Z2
=

37 18 12.

JTi = 36 34 21,

4. Aajust the level observations in Art. 100 by the method of condi

tioned observations, taking the weights as equal.

5. Discuss the method of correcting the latitudes and departures in

a compass survey of a field.

6. Two bases, AB and DE, are connected by three triangles, ABC,

BCD, and CDE. The bases are measured, and also the three angles

of each triangle. State the four conditional equations, and explain in

detail the process of adjustment.
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CHAPTER IX.

THE DISCUSSION OF OBSERVATIONS.

127. In the preceding pages it has been shown how to adjust

observations, and how to ascertain their precision by means of

the probable error. By thus treating series or sets of measure

ments, a comparison or discussion may be instituted concern

ing the relative degrees of precision, the presence of constant

errors, and the best way to improve the methods of observa

tion. In this chapter it is proposed to present some further

remarks relating to the discussion ot observations by the use of

the fundamental law of probability of error, and to indicate that

this law is also applicable to social statistics, and that it really

governs the way in which the laws of nature are executed.

Probability of Errors.

128. In Chap. II a method of investigating the probability of

errors, and comparing theory with experience, was given, in

which it was necessary to assume the value of the measure of

precision Ji. For instance, in Arts. 19 and 33 there are dis

cussed one hundred residual errors, for which the value of k is

stated to be -^-. It is now easy to see that this value may
be found at once from the probable error r by means o f the

formula (17), while r is deduced from the formula (20). T&amp;lt;?
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compare, then, the theoretical and actual distribution of errors

for such cases by the use of Table I it is only necessary to

deduce the value of r in the usual way, and from it to find h,

which enters as an argument in the table.

It is evident, then, that, in undertaking such discussions, it is

more convenient to have a table of the values of the probability

integral in terms of r as an argument. Such is Table II at

the end of this book, which gives, for successive values of -, the

probability that a given error is less numerically than x, or that

it lies between the limits x and + x.

To illustrate the use of Table II consider an angle for which

the mean value is found to be

37 42 i 3 &quot;.9 2 o&quot;.2 5 .

Now, from the definition of probable error, it is known that the

probability is \ that the actual error of the result is less than

o&quot;.25.
Let it be asked what are the respective probabilities that

the actual error is less than the amounts 0&quot;.$
and i&quot;.o. From

the table

for - =^ = 2,
P = 0.823,

r 0.25

for =^ = 4, P= 0.993-
r 0.25

Hence the probability that the error in the result is less than

o&quot;.5
is 0.823, or it is a fair wager of 823 to 177 that such is

the case. And the probability that the error is less than i&quot;.o

is 0.993, or it is a fair wager of 993 to 7 that such is the

case.

As the number of errors is proportional to the probability,

the values of the integral need only to be multiplied by the

total number of errors to give the theoretical number less than
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certain limits. For example, in one thousand errors or residu

als, there should be

264 less than ^r, and 736 greater,

500 less than r, and 500 greater,

823 less than 2r, and 177 greater,

957 less than 3^, and 43 greater,

993 less than 4^, and 7 greater,

999 less than $r, and i greater.

Table II gives only four decimal places, which suffice for

any ordinary, investigation. By the methods of calculation

explained in Chap. II more decimals may be deduced, and the

following results be found for the theoretical distribution of

errors when the total number of errors is one hundred thou

sand :

95698 are less than 3^, and 4302 greater,

99302 are less than qr, and 698 greater,

99926 are less than 5?-, and 74 greater,

99995 are less than 6r, and 5 greater.

As the frequency with which an error occurs is expressed by
its probability, it is evident that errors greater than five or six

times the probable error should be very rare.

129. As shown in Art. 35, the probability of the error o is

h.dx .
i r / i 0.4769 .. ,

, or, introducing for // its value -
, it may be written

*
J = 0.2691

-
.

Here dx is the interval between successive values of x. It

there be N errors in a series, the number having the value

should hence be

(42) ^ =
0.2691^,

where r is the probable error of a single observation.
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Formula (42) affords a rough comparison of theory and ex

perience without the use of tables. For instance, let the

target-shots described in Art. 18 be again considered, and

regard those in the middle division as having the error o, those

in the next division above as having the error -f- I, and so

on. Then the errors, without regard to sign, are as in the first

column below, their squares in the second, their weights or the

number of shots in the third, and the weighted squares in the

fourth.

X.
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The Rejection of Doubtful Observations.

130. The theoretical distribution of errors, according to the

fundamental formula (i), is shown by the values of the proba

bility integral given in Table II
;
and from these it is seen, as

in Art. 128, that the number of errors greater than ^r or ^r is

very small. It becomes, then, a question, whether the probabil

ity of an error might not be so small that it would be justifiable

to reject entirely the corresponding observation. For instance,

if one thousand direct observations be taken, the probability

that there will be one error greater than $r is ^; if, then, in

taking a series of, say, fifty observations, one error should exceed

5r, the probability of its occurrence would be very much smaller

than ^, and the observer would be tempted to reject that

observation. But undoubtedly it would be a dangerous thing

to allow an observer to decide upon his own limit of rejection.

It has accordingly been proposed to attempt to establish a cri

terion by which the limit may be legitimately established from

the principles of the probability of error. The criterion pro

posed by Chauvenet is the simplest of those deduced for this

purpose, and is the following :

Let n be the number of direct observations, and dlso the

number of errors. Let r denote the probable error oi a single

observation as found from the n residuals by formula (20).

Let x be the limiting error, and let - be called /. Ler P be the

value of the integral in Table II corresponding to /. Then

(43) P= 2H ~
*, and x tr

2U

is the criterion for the rejection of the largest residual

To prove this, consider that the quantities in Table II need

only be multiplied by the total number of errors to show the

actual distribution ;
so that nP indicates the number of



131. REJECTION OF DOUBTFUL OBSERVATIONS. I67

less than xt and n nP indicates the number greater than x.

Now, if

there is but half an error greater than
x&amp;gt;

and any error greater

than this x would be larger than allowed by the theoretical dis

tribution. Hence the value of x corresponding to this value of

P is the limiting value, which indicates whether the greatest

residual in a series may be rejected or not.

131. In order to facilitate the use of this criterion, Table VII

has been computed, giving the value of / directly for several
T Q _ T

values of ;/. For instance, if n is 5, the value of P is-1

10
or 0.9 ;

and from Table VII the corresponding value of / is 2.44.

The following particular example will illustrate the method
of procedure. Let there be given thirteen observations of an

angle, as in the first column below.

62
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Let the mean of these be found, the residuals placed in the

second column, and their squares in the third. The sum Iv2

is 47.01 ;
and hence, from (20), the probable error r of a single

observation is
i&quot;.32.

Table VII gives / = 3.07 when ;/ 13 :

hence, by the criterion, the limiting error is

x 3-7 X i.3 2 =
4-5&amp;gt;

and accordingly the largest residual 4.61 should be rejected.

To ascertain if the next largest residual, 2.99, should alsD be

rejected, the mean of the twelve good observations should be

found, and a new r computed from the twelve new residuals.

But evidently the new sum ^v2 will not differ greatly from the

former sum minus the square of the rejected residual, or

new Zv- = 47.01 21.25 = 25.76,

from which the new r is found to be about
i&quot;.O3.

Then the

limiting error is

x 3.02 x 1.03 = 3&quot;.
1 1,

which shows that the residual 2.99 is not to be rejected.

132. Hagen s deduction of the law of probability of error,

given in Chap. II, suggests another method of finding the

limiting error of observation, and a new criterion for rejection.

In Art. 26 the maximum error is expressed by m&x, and the

quantity mkx* is replaced by ^. It is hence easy, by the help

of (17), to find

r2

(44) m&x = 4-4
-

where dx is the constant interval between successive values of

the errors. For the observations discussed in Art. 129 this

formula gives the limiting error mkx as 5.3, which seems

entirely satisfactory. It is not possible to apply it, however, to

angle measurements like those of the last article, on account of

the impossibility of assigning a proper value to the interval dx*
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The same difficulty prevents the practical use of formula (42),

except in cases where this constant interval is definitely known.

There is another criterion, due to Peirce, which may be

applied to the case of indirect observations involving several

unknown quantities, as well as to that of direct measurements
;

but its development cannot be given here. In general, it should

be borne in mind that the rejection of measurements for the

single reason of discordance with others is not usually justi

fiable unless that discordance is considerably more than indi

cated by the criterions. A mistake is to be rejected, and an

observation giving a residual greater than ^r or ^r is to be

regarded with suspicion, and be certainly rejected if the note

book shows any thing unfavorable in the circumstances under

which it was taken. Usually, in practice, the number of large

errors is greater than should be the case, according to theory ;

and this seems to indicate, either that the series is not suf

ficiently extended to give a reliable value of r, or that abnormal

causes of error affect certain observations. If it were possible

to increase the number of measurements, it would undoubtedly
be found that the abnormal errors would be as often positive as

negative, and that, for a very great number, there would be few

that could be rejected by the criterion.

Constant Errors.

133. In all that has preceded, it has been supposed that

the constant errors of observation have been eliminated from the

numerical results before discussing them by the Method of

Least Squares. If this is riot done, and all the measurements

of a set are affected by the same constant error, that error

will also appear in the adjusted result. For instance, suppose

thirty shots to be fired with the intention of hitting the centre

of a target, and let their actual distribution be as shown in the

figure. The most probable location of the centre, according to

the records, is about two spaces to the right, and about half a
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Fig. 13.

space below the true centre. Each shot, then, has been subject
to these constant errors

;
the first due, perhaps, to the wind,

and the second to gravity. If, now, these marks on the target

represented observations for

the purpose of locating the

centre, the result obtained by
their adjustment would be in

error by the amounts just

stated. Therefore, if all the

observations of a series are

affected by the same constant

error, the Method of Least

Squares can do nothing but

adjust the accidental errors;

and the probable errors of the

adjusted results refer only to

Jt

them, and give no indication

whether constant causes of error affect the measurements or not.

134. The probability of the existence of a constant error in

a case like that just illustrated is evidently large, and the

numerical probability of its value lying between certain limits

may be found by the help of Table II. The following is an

example of such a discussion :

Suppose that an angle is laid out with very accurate instru

ments, and tested in many ways, so that its true value may be

regarded as exactly 90. Let twenty-five observations be taken

upon it with a transit whose accuracy is to be tested, and let

the mean of those measurements be 89 59 57&quot;
o&quot;.S. Then

it is extremely probable that a constant error of about
3&quot;

exists in the instrument. To find the numerical expression of

this probability, suppose that the true value of the angle was

unknown, and ask the probability that the mean is within 2&quot; of

the truth. Then, for - = -?-= 2.5, the value of the integral in

r 0.8
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Table II is 0.908 ;
so that it is a wager of 908 to 92, or of

almost 10 to i, that the mean is between the limits 89 59 55&quot;

and 89 59 59&quot;. Hence, since the angle is known to be 90, it

must be the same probability and the same wager that there

is a constant error lying between the limits i&quot; and 5 .

So, also, if x =
3&quot;,

it may be shown that it is a wager of 39 to i

that there is a constant error between o&quot; and 6&quot;.

135. In case that several sources of constant error exist, the

adjustment by the Method of Least Squares tends to elimi

nate them, and to give results nearer and nearer to the actual

values, as the number of observations is increased. This will

be rendered evident by considering again the illustration of

the target. One marksman fires thirty balls, which are subject

to a constant error, as in Fig. 13. Another marksman fires

thirty more, which have a different constant error, owing to the

peculiarities in his aim. A third marksman has a third con

stant error, in a still different direction. The shots of each

marksman are distributed around their most probable centre

in accordance with the law of probability of accidental errors.

And undoubtedly these constant errors will be grouped around

the true centre according to the same law
; and, as the number

of marksmen increases, the constant errors will thus tend to

annul each other, and ultimately make the most probable centre

coincide with the true one.

And so it must be in angle observations, when great pre
cision is demanded. On one day certain constant errors, due

to atmospheric influences, affect all results in a certain direc

tion
;
while on a second day, under different influences, new

constant errors act in another direction. If the measurements

be continued over many days, the number and magnitude of

positive constant errors will be likely to equal the negative
ones

;
so that the adjustment by the Method of Least Squares

will balance them, and give results near to the true values.
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Here may be seen the reason why the number of large residuals

is usually greater than the theory demands, and also a reason

why a criterion for rejection cannot generally be safely applied
to series of observations consisting of few measurements.

Social Statistics.

136. It is found that the law of probability of error applies
to many phenomena of social and political science. If men
be arranged in groups, according to their heights, there will be

found few dwarfs and few giants ;
and the numbers in the dif

ferent groups will closely agree with the theoretical distribu

tion required by the curve of probability. The following table,

which is taken from Gould s Statistics (New York, 1869),

Height.

Inches.
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gives a comparison of the theoretical and observed heights of

18,780 white soldiers, including men of all nativities and ages.

In the second column are recorded the actual number measured

of each height, and, in the third, the proportional number in

10,000. The mean height as found by formula (9) is 67.24

inches, from this the residuals are formed
;
and the probable

error ./f a single determination, by formula (23), is 1.676 inches.

The theoretical numbers between the several limits are next

derived by the help of Table II, and recorded in the fourth

column, while the differences between the calculated and ob

served numbers are given in the last.

137. Numerous comparisons of this kind, made by Quetelet

and others, have clearly established that stature and the other

proportions of the body are governed by the law of probability

of error. Nature, in fact, aims to produce certain mean pro

portions ;
and the various groups into which mankind may be

classified deviate from the mean according to the law of the

probability curve. And the same is true of intellect. By the

discussion of social statistics, then, it is possible to discovei

the mean type of humanity, not merely in physical proportion,

but in intellect, capacity, judgment, and desires. &quot;The aver

age man,&quot; says Quetelet, &quot;is for a nation what the centre of

gravity is for a body : to the consideration of this are referred

all the phenomena of equilibrium.&quot;

In fact, the distribution of social phenomena seems strictly

analogous to that of the rifle-shots discussed in Art. 135. Each

shot may represent a person, or some property of a person, to

be investigated. For all the shots there is a mean, showing
the most probable result

;
and also, for each group, there is a

secondary mean, depending on the particular race or nation to

which the person belongs. There is a type for soldiers, and

another for sailors
;
one for Americans, and another for Euro

peans ;
one for men, and another for women

;
one for the period
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of youth, and another for that of maturity. The individuals of

each type are clustered around its mean, according to the law

of probability ;
and the several types are clustered around a

general mean, according to the same law. This is true for all

statistical data in which equal positive and negative deviations

from the mean are equally probable ; in other cases an unsym-
metric distribution may occur.

138. Problems.

1. An angle is measured by an instrument graduated to quarter-

minutes, the probable error of a single reading being 12 seconds. How

many observations are necessary, that it may be a wager of 5 to i that

the mean is within one second of the truth?

2. A line is measured 500 times. If the probable error of each

observation is 0.6 centimeters, how many errors will be less than i cen

timeter, and greater than 0.4 centimeters?

3. The capacity of a certain large vessel is unknown : 1,600 persons

guess at the number of gallons of water which it will hold, and the

average of their guesses is 289 gallons. The vessel is then measured

by a committee, and found to hold 297 gallons. If the probable error

of a single guess be 50 gallons, and it be impossible that there can be

any constant source of error in guessing, what is the probability that the

committee have an error in their measurement of between 3 and 13

gallons ?

4. Determine from the data in Art. 136 the number of men per

million who are more than seven feet tall.

5. Two observations differ by the amount a. A third observation

differs from the mean of the first two by the amount u. Find, by

Chauvenet s criterion, the value of u necessary to reject the third

observation.



140. THREE NORMAL EQUATIONS.

CHAPTER X.

SOLUTION OF NORMAL EQUATIONS.

139. In the preceding pages the student has been left to

solve normal equations by any common algebraic process. It

is usual in computing offices, however, to require them to be

formed and solved by a definite method for the sake of uni

formity in making comparisons. This is, indeed, absolutely

necessary when the number of unknown quantities is greater

than three or four, or when the co-efficients are large, in order

that checks upon the numerical work may be constantly had

and the accuracy of the results be ensured. The methods in

most common use will now be explained.

Three Normal Equations.

140. The method of elimination, due to Gauss, which is de

scribed below, is probably the best for this case except when

the co-efficients are small numbers. In that event the determi

nant formulas for solution may be advantageously employed.

These will be here written for the general case of three linear

equations,

A,x -f By + C,z = )

+ By + C2z = D2 ,

+ By + C,z - Z?3 ,
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the solution of which gives the formulas,

X.

x =
A
A
A

2 C2

?i Ci

?a C2

A, B, C
3

A A 2 C2

B, C
3

z =
A

^ ^ ^
^ 2 ^2 C2

^3 ^3 Ci

These are readily kept in mind by noticing that the denom
inator is the same for each, and that in the numerator the

absolute terms D replace the co-efficients of the unknown quan
tity to be found. If C, = C2

= C
3
= o, and A

3
= B

z
= D

3
= o,

this solution reduces to that given in Art. 55.

141. As an illustration of this method let the three normal

equations be

3* - y 4- 2z = 5,

x -f 47 -f z = 6,

2* + y + S z
=

3-

Then the determinant denominator, being developed, gives

3
-

= 3
4 i

i 5
+ I

4
=

32-

Similarly the values of the three determinant numerators are
found to be no, 86, and 42. Hence

* = +, y=+ ft, *=-,
which exactly satisfy the three given normal equations.
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Checks upon the results of the solution may be also obtained

by writing the normal equations in another order, making for

instance the third the first one, and thus obtaining different

numerical determinants for development.

Formation of Normal Equations.

142. Let the n observation equations between three unknown

quantities be of equal weight, and let the observed quantities

Mv Mv . . . Mn be transposed to the first term, giving

a^ + hy + CiZ + m l
= o,

a?x + b2y + c*z -\- m2
=

o,

anx + bny + cnz -f- mn = o,

and let there be formed the sums

anbn =

Then the three normal equations are

\aa~\x + [a^]^ + \ac\z -f [w] = o,

[^&amp;gt; + Mj + [^&amp;gt; + \bm\ = o,

[^].r + \cb~\y + \cc\z + [cm] = o.

Thus the formation of the normal equations consists in corn*

puting the co-efficients [aal, \ab~\ t
etc. This may be done by

common arithmetic, by the help of Crelle s multiplication

table, a logarithmic table, a table of squares, or a calculating

machine, The following method of arranging and checking
the work is frequently employed.

Write the co-efficients and absolute terms of the observation
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equations in tabular form and add a column containing the

algebraic sums of these for each equation. Thus for three

unknown quantities the table has the above form, the last

column containing, for each horizontal row, the algebraic sum

a + ^ + c + m s -

A second table, which need not be here shown, contains

fifteen columns, headed aa, ab, . . . ss, and the summation of

the products in these columns gives the fifteen co efficients and

absolute quantities which are arranged in a third table as be

low. It is to be noted that [ba\, [ca], \_cfr\
are the same as [afr],

\ac~\j \bc~\, and hence need not be computed.



143- FORMATION OF NORMAL EQUATIONS. 179

sum [cs] at the right of \c and under s], and so on. The last

column is used to record the results of the five checks, namely,

\aa\ + [ah] + \ac] + \am~\ = [as],

[da] + [U] + M + \bn{\
=

[fc],

[] + W\ + M +M - [],

[so] + [^] + [^] + [si] - M.

If these checks are all fulfilled, the normal equations may be

regarded as correctly formed. In filling out the table the

coefficients \ba], \_mc\, etc., need not be written, since they are

the same as [ab~\, [cm~\, etc.

143. As a simple example let five observations upon three

quantities give the five observation equations

-f z 2 = 0,

-\-y
- 18 = o.

- z 7 = 0,

-\- z 10 = 0.

The arrangement of the first table is then as follows:
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The products aa, ab, etc., are next computed, and the sums

[rf0], \ab\, etc., are found. The table of co-efficients and ab
solute quantities then is
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Gauss s Method of Solution.

144. The method of solution due to Gauss, by which is

preserved throughout the work the symmetry that exists in

the coefficients of the normal equations, is extensively used

by computers. To illustrate it, three normal equations of

equal weight will be sufficient.

From the n observation equations are derived, by the

method of Art. 142, the three normal equations

\ad\x + \ab\y + \_ac\z + [am] o,

\ba\x + \bb\y + \bc\z + \bm\ -
o,

\ca~\x -f \cb~\y + \cc~\z + [cm} = o.

From the first equation take the value of x and substitute it

in the second and third, giving

+N - d
)
-

]

For the sake of abbreviation the quantities within the paren

theses may be denoted by \bb . i], [be. i], [bm . i] for the first

equation, and by [cb . i], [cc . i], [cm. i] for the second equa

tion. Then these two equations may be written

[M.i]y-\- [be *]z + [bm. i]
=

o,

\cb . i]y + [cc . \\z -\- [cm. i]
=

o,

which are similar in form to the second and third normal equa

tions, except that the terms containing x have disappeared

and -each co-efficient is marked with a I. These quantities,

[bb.i], [be. i], may be called &quot;auxiliaries,&quot; and the law of

their formation is evident.
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From the first of these equations take the value of y and

substitute it in the second, giving

which may be abbreviated into

[*v . z\z -|- [/;# . 2]
=

o,

where [/r . 2] and
[&amp;gt;;

. 2] may be called
&quot; second auxiliaries.

5

The value of the quantity z now is

z ~

while the values of y and x are

_[bm.i\ [fo.i]
J - &quot;

L^.i] [W.i]
1

_[tfH_[Vl _ M
&quot;

[fltf] [^^J [oaf

and the correctness of these results may be tested by inserting

the computed values of x, y, z in the second and third normal

equations. Or the order of computation may be reversed and

the value of x be first obtained, z being first eliminated and

then y ;
this will be necessary only in critical cases.

145. When the normal equations have been formed by the

method of Art. 142, the checks there explained should be con

tinued by the computation of the auxiliaries [mm . i], \bs. i],

etc.; thus,

r
, n r,

-,
MM

\bs . I J
=

\ps\ r -.

[aa]

And a second table should be formed for the two equations

containing y and z, by which four numerical checks are ob

tained.
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In the next step also the auxiliaries [mm . 2], [cs . 2], etc.,

are found
;
for example,

T r n \cb . lir&f . llJ

and then the third table affords three numerical checks.

146. A valuable final check is obtained by computing the

third set of auxiliaries
; thus,

,
r n [me. 2}[cm. 2]

[mm . 3]
= [mm . 2]

-
[Cfm2 ]

&amp;gt;

[me . 2~][es . 2]

and these three values are equal. Each is also equal to the

quantity ^v
2

,
or to the sum of the squares of the residuals ob

tained by substituting in the observation equations the values

of x, y, and z, found from the normal equations.

To prove this let an observation equation be

ax -\-by-\- cz -J- m = o.

Then the most probable values, x, y, z, will not reduce it to

zero, but leave a small residual v. Hence, strictly,

ax -j- by -{- cz 4- m = v.

By squaring each of the values of v, and adding the results,

the value of -2V is found
;
and if from this each normal equa

tion, first multiplied by its unknown quantity, be subtracted, k
reduces to

\am\x -f [bm\y + \cm\z -j- [mm] = 2v2
.
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If this be regarded as a fourth normal equation, it becomes,

after the elimination of x,

\bm . i]y + {cm . i\z + [mm . i] 2v2
,

and after eliminating/ it is

[cm . 2\z -\- [mm .2] 2v2
;

and finally, after the elimination of z,

[mm . 3]
= ^V.

Hence the auxiliary [mm . 3] is equal to the sum of the

squares of the residuals ;
and that [ins . 3] and [ss . 3] nave the

same value is shown by the method of their formation.

147. As a simple numerical example let the following ob

servation equations, all of weight unity, be taken :

_ X +Z ~ 2=0,

x+y -9 = 0,

+ y -18 = 0,

-\-y-Z- 7=0,

-f- z 10 = 0.

The normal equations for this case have already been formed in

Art. 143, and the values of its co-efficients and check numbers

will be taken from the table there given.

The computation of the auxiliaries for the two equations

containing/ and z is now made, thus :

ab\
i X i _ ,

:
&quot; ~
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\ba\\am\ . i X n
[bm. i]

= \bm}
- L

-r^V-
J = ~ 34+ 7

= ~
28.5,

,

33 +

+ 3-

x

2

i X ii

2

i X ii

= + 0-5,

\ma\\am\ ii X n
. . J

= [mm] - -3-
J = + 558

- - = + 497-5.

530
- = + 4 69 . 5 ,

= +443-5,

and the corresponding tabulation is as follows, the four check;;

being exactly fulfilled:
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r -, r \cb. \~\\bm. i]
[cm. 2] :=[cm.i] -i_=LL__l = _ l6 .

-, r n

[MM. a]
= [MM.I] - = + 172.6,

r -i \mb . \\\bs . i]
:=[MT.I]

- -L rS = + 156.0,

and the corresponding table with its checks is:

The value of the unknown quantity z now is

z =
- 16.6

T6~ 375

and from the two equations containing y and #,

X.
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residuals. There are found [;;/;. 3] = 0.375, \lns 3] :

-375&amp;gt;

and [ss . 3]
= 0.375. Also, by substituting the values of x,y, 2,

in the observation equations,

#,= 0.125, &2 =-j-o.i25, ^=-0.375, ^=+ 0.250, ^=+0.375,

the sum of whose squares is 2v* = 0.375. Hence the correct

ness of all the numerical work is assured.

When the coefficients of the normal equations contain

decimals these are to be rounded off as the work progresses,

so that the checks may be sufficiently satisfied.

Weighted Observations.

148. The method of Gauss is also directly applicable to

normal equations derived from independent weighted observa

tion equations. The process will be illustrated for three

unknown quantities. Let the observation equations be

+ x o, pl
=

85,

+y =
o, p2

= 108,

+ z =
o, A -

49&amp;gt;

+ x y +0.92 = 0, ^,-165,
JT + f-+ 1.35=0, / 5

=
78,

X -f- Z -f- 1.00 = 0, /6 60.

The first table is then as follows :
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Next the co-efficients [pad\, [pab~\, etc., are computed and

the table of normal equations is formed, the co-efficients below

the diagonal line being omitted, since [pbd\ is the same as

[pab], and so on.
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reduced normal equations containing y and z is formed, the

four checks being fulfilled within one unit in the last figure.

The second auxiliaries [pec .2], [pcm. 2], etc., are computed

exactly as before and the table for the final equation in z is
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Squaring these and multiplying each square by its correspond

ing weight there results

2fv* = 78.57.

The computation of the third auxiliaries gives

[/*/. 3]
=

78- 5 l&amp;gt;&quot;&quot;-3]

= 78.6, [/.3] =
78.8,

an agreement which is as close as is necessary for this case.

Logarithmic Compulations.

151. The use of logarithms is often advantageous in forming
the products required in the solution of normal equations. A
systematic scheme for such solutions will now be presented in

which the four-place logarithmic table given at the end of this

volume will be employed. In general a five- or seven-place

table will be found easier to use when the co-efficients contain

more than four significant figures.

The scheme to be used will be as follows for three normal

equations, the space for checks being in a horizontal row at

the bottom and these checks referring to the auxiliaries instead

of to the normal equations themselves, which are supposed to

have been first formed and checked by the method of Art. 14.4.

The form is first to be filled out by writing the numbers [aa],

\ab\, . . . \ins\ in the places indicated. The logarithms of [aa],

\_ab~], . . . [as] are next taken out and recorded. Then writing

log [aa] on a strip of paper, it is subtracted in turn from

log [afr], log [ac], log [am], log [as], and the differences are

written, thus filling out the top row of squares.

Log \ab\ is now written on a slip of paper and added to the

logarithms at the foot of the first row, thus giving the loga

rithms for the second row. Those in the third and fourth

rows are similarly found by adding log \ac\ and log [am] to

the same ones as before. The numbers corresponding to
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X
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adding together \bb . i], [be. i], and [bm . i] ;
and in a similar

manner [.i] and [ms.i] are found. Here [w.i] may be

determined in two ways, by the addition of the horizontal row

and also by the column above it.

A second similar tabulation is also made for the next opera

tion, the auxiliaries [bb . i], be . i], ... [MS . i] being transferred

from the first table to the top of the squares in the second

one. The process will be now exemplified by a numerical

example.

152. Let there be given three normal equations which have

arisen from a case of conditioned observations, namely,

+ *7-73x 4-8qy 8.130+ 4.60 = 0,

4.80^ -j- 17.607 2.400 + 34-89 = o,

8.13* 2.4qy + 13.93*
-

7-75
= -

Here the check sums [as], [bs], [cs~\, [ins] are to be formed

from the given co efficients
;
for example,

[
fs

] 8.13
- 2.40+ 13.93

-
7.75 = -

4.35,

but [mm], [MS], and
[ss~\

cannot be obtained. For the purpose
of carrying through the full system of checks, one of these,

say [;///#], may be assumed, and the others be computed ;

assuming \miri\
= o, the value of \ins\ is -f- 31.74. The

co-efficients and check numbers are then arranged in the upper

right-hand corners of the squares in the following table. The

four-place logarithms of those in the upper row are taken out,

the letter n being affixed to the logarithm of a negative num
ber. The subtractions and additions of these logarithms as,

required by the scheme of the last article are then made, and

the corresponding numbers taken from the logarithmic table.

These subtracted from those in the upper corners give the

auxiliaries fbb . i], [be. i], etc., which are written in the lower
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ri^ht-hand corners. The checks of these are then made, ando

found to be verified to one unit of the last decimal.

X
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The scheme shown in the twelve upper left-hand squares of

the table in Art. 151 will apply to this case if a, b, c, m be

changed to b, c, m, s, and I added in all brackets except the

y
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From the logarithms in the upper squares of the last table,

y = log
1

(0.3458) log&quot;

1

(T. 4506* + 1.70960) = 2.362,

and similarly from the logarithms in the upper squares of the

first table, according to the last formula of Art. 144,

x = log
1

(1.4141) log&quot;

1

(1.66140 -j- 1.70960)

log-
1

(1.43250 + 0.37310) = 1.134,

which are the values that closely satisfy the given normal

equations.

After becoming acquainted with this method by solving
several sets of normal equations the student will find it,

except when the coefficients are small integers, to be gener

ally more expeditious than methods which do not employ
logarithms.

Probable Errors of Adjusted Values.

153. When the sum of the weighted squares of the residuals,

~2pv
2

,
has been computed, the probable error of an independent

observation of weight unity is given by (32), namely,

n-q
in which n is the number of independent observations and q
the number of unknown quantities. If px , py , pz be the

weights of the adjusted values of x, y, 2, the probable errors of

these adjusted values then are

and thus these are known as soon as the weights have been

determined.
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154. To find these weights the methods of Arts. 74, 75 may
be conveniently employed for three unknown quantities.

Using the solution in Art. 141, replacing A
lt B

iy Cu etc.,

by [aa], [a&], \_ac~], etc., and designating by D the determinant
denominator common to the three values, there are found,

D D D
\_bb\cc\

-
[bcY

y
\aa}\cc\

-
[ac]&amp;gt;

* &quot;

which are the weights of the adjusted values of x, y, z.

Referring again to Art. 74, and to the method of Gauss

given in Art. 144, it is seen that the value of z is

[cm. 2]

\cc.*\

The negative sign here results from the fact that the absolute

terms [am], \bm\, etc., are taken positive in the first members
of the normal equations, and the numerator vanishes when
those terms are all zero. The quantity \cc . 2] is thus the

reciprocal of the co-efficient of the absolute terms which be

longed to the normal equation for z and is hence the weight
of

, or/.; = \cc . 2].

By equating this value of/z to that found above, D may be

eliminated from the three expressions, giving

==r
&quot;

which are values of the weights expressed in terms of the

coefficients and auxiliaries used in finding the value of
x&amp;gt; y, z.

155. For example, consider the six observation equations of

Art. 148, and let it be required to find the probable errors of

the adjusted values of x, y, 2. The normal equations are
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solved in Art. 149, giving x = o. 1 8, y = -\- 0.48, z = 0.74,

and the value of 2pv* is found to be 78.6 ; thus,

4/78.6r= 0.6745J/
- =

3. 45

is the probable error of an observation of weight unity. The

weights of the adjusted values of x, y, z are

i2Q. c X 263.2
/.
=

129.5, py = -JL2__i - =
194.4,

_ 129.5 X 263.2 X 3 Q _
P*

35 i X 187
-

78*
I77 5

and the probable errors of the values of x,y t
z are

.30,

... =-= .
&amp;gt; ,

- = ., -=
1/177.5 ri94-4 ^129.5

Accordingly the adjusted values may be written

x = 0.18 0.26, y = + 0.48 o 25, z ~ 0.74 0.

which shows the degree of mental confidence that the ad

justed values may claim.

156. When the number of unknowns is large the expres

sions for the weights of the adjusted values become quite

complex, and in order to find their values it may be some

times advisable to deduce x, y, z, w, etc., by two or more dif

ferent orders of elimination. The following are formulas for

the weights for the case of four unknown quantities, where w
is first determined and x last :

_ [dd.
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in which the subscript quantities have the following values,

[ ]=[] -

These, by omitting all factors containing d, reduce to the

same expressions as above derived for the case of three un

knowns, x, y, z.

157. Problems.

1. Three observations on a single quantity furnish the observation

equations 3* = 2.18, 2* = 1.44, 4* = 2 -9- Find the most probable

value of x and its probable error.

2. Observations made in a deep well near Paris on the tempera

ture at different depths below the surface of the earth gave the

following results, / being the temperature corresponding to the

depth d\

For d = 28 meters, / = n .?! C., for d = 298 meters, / = 22.2O C.

&amp;lt;/= 66 t = 12.90 ^=400 / = 23.75

d 173 t - 16.40 d 505 / = 26.43

^^248 /= 20.00 d=M% f = 27-70

Assume the temperature at the surface (^/=o), to be the annual

mean / = io.6o, and also that the law of variation of /with d is

State the observation equations, form the normal equations, solve

them by the method of Art. 154, and show that the most probable

values of S and T are +0.04153 0.00165 and -0.00001929

0.00000356.
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3. Given the three normal equations,

6.649.*: -j- 2.0417 -f- 2.9412 i.oo = o,

2.041* + 4.2497+ 0.9260 1.35 = o,

2.941* -f 0.9267 + 5.3822 0.92 = o.

Form the sums \as\ \bs\, \cs\, [MS], and then solve the equations

by the use of logarithms.

4. At a station O angles were measured as follows between the

five stations, A, B, C, D, E :

A OB
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CHAPTER XI.

APPENDIX AND TABLES.

158. The elementary principles and applications of the

Method of Least Squares have now been given and exempli

fied. It remains to note a few points that have not found a

place in the preceding chapters, to present some remarks on

the history and literature of the subject, and to give several

tables that will be useful in abridging computations.

Observations Involving Non-Linear Equations.

159. It has been thus far assumed that the observations can

be represented by equations of the first degree. If this is not

the case, and higher equations are involved, they can be re

duced to linear ones by the following method :

Let the q quantities to be determined be represented by

#u ^2 ...
*&amp;lt;?&amp;gt;

a*ncl tne n measured quantities by Mlt M2 . . . Mm

and let the n observation equations be of the form

Now, let approximate values of the unknown quantities be

found, either by trial, or by the solution of a sufficient number

of equations, and let them be denoted by Zu Zz . . . Zq
. Let
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sr/, z2

f
. . . z! be the most probable corrections to these ap

proximate values
;
so that

z
l
= Zl -f Zi ,

22
= Z2 4- s2 . . . zq Zq -f z^.

If, now, each of the functions &amp;lt; be developed by Taylor s

theorem, and the products and higher powers of the correc

tions be neglected, there will be n expressions of the form

...
z^ dz2 dzq

Here the terms f(Zlt Z2 . . . Z
g)

are known, and may be desig
nated by Nlt N2 . . . Nq ; so that the ;/ expressions reduce to

the form

^+v + . .. + ** -*-*!
dz, dz3 dzq

y

where the differential co-efficients are to be found by differen

tiating each of the observation equations with reference to

each variable, and then substituting the approximate values

Zlt Z2 . . . Z
q ,

for z lt ^2 ... z
q . Denoting them, then, by a, b, c,

etc., the n equations are of the form

**i + bz2 + **
3 + + &f

= M- N,

in which all the letters except z lt z2 . . . z^ t denote known

quantities. These n equations are exactly like the observa

tion equations (10) or (12), and from them the normal equa
tions are formed, whose solution furnishes the most probable
values of the corrections.

If non-linear conditional equations are given, it is also neces

sary to find approximate values for the unknown quantities,

and assume a system of corrections. Then the functional con

ditional equations may be developed as above, and reduced to
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linear equations containing the corrections as unknowns, which

may be treated by the method of correlatives, and the most

probable system of corrections determined, which, applied to

the approximate values, will give the adjusted results. If these

do not satisfy the original equations with sufficient accuracy, a

new system of corrections should be assumed, and the process

be again repeated.

Certain expressions, like that in Art. m, may be reduced to

the linear form by the help of logarithms ; and, when this is

possible, it will be found a more convenient method of treat

ment than the development by Taylor s theorem.

160. As an illustration of the method, let M be the numbei

of millions of people under the age of m years, and let it be

required to find the most probable value of z in the empirical

formula

&amp;lt;

= 50.16 sin m(o.996)^2 = M,

which is supposed to give the relation between M and m for

the population of the United States in 1880. The data are

nine values of M, from the census compendium, given in the

second column of the table below.

The first step is to find by trial that i.55 is an approximate

value of the angle z. The second is to compute nine values of

the expression
50.16 sin m(o.996)^1.55 = IV,

corresponding to the nine given values of m : these are put in

the third column of the table. In the fourth column are the

differences M N between the observed and computed values.

The fifth column contains the values of the derivative

=
5

dz

corresponding to the nine values of m.
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m.
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the precision of the formula has not been greatly increased by
the variation in the angle z. By slightly increasing the number

0.996, the formula can be made to more closely agree with the

observations.

Mean Error and Probable Error.

l6l. The probable error is an error of such a value that any

given error is as likely to exceed it as be less than it, and it

hence seems to be the quantity that would most naturally be

selected for indicating the precision of observations. But there

is another error very commonly employed for the same purpose

called the &quot;mean error,&quot; whose definition is, the error whose

square is the mean of the squares of all the errors. Hence

the mean error is, for direct observations, the square root of the

quantity , or, in terms of the residuals, the square root of

n
&quot;^&quot;t

2

the quantity
-

. In general, then, the mean error can be

determined from the formulas for probable error by changing

the co-efficient 0.6745 into unity. If m be the mean, and r the

probable error, the relation between them is

m = = 1.4826; .

0.6745

In the annexed figure, OP indicates the probable error, and

OM the mean error. It is seen, by Art. 29, that M is the

abscissa of the point of inflection of the probability curve.

In Table II, the value of the integral for the argument

1.4826;- is 0.6826. Hence 0.6826 is the probability that an

error is less than the mean error, or in 1,000 errors there

should be 683 less than m. It is a fair wager of I to I that

an error taken at random is less than the probable error; but it

is a fair wager of 683 to 317, or about 2.15 to i, that it is less

than the mean error.
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The mean error is generally used in German books. In this

country the probable error is commonly employed ; and, being
the most natural unit of comparison, it is certainly to be desired

that it alone should be used, and the mean error be discarded.

162. Instead of the mean or probable error, a quantity
called the &quot;huge error&quot; might be employed to indicate the

precision of measurements. The huge error is defined to be

an error of such a magnitude that 999 errors out of 1,000 are

less than it, and only I greater ; or, in other words, that the

probability of an error being less than it, is 0.999. If u be

the huge error, the relation of u to r is found from Table II.

For P 0.999, the argument - is 4.9 : hence

u = 4.gr.

Accordingly, all formulas for probable error may be changed
into those for huge error by writing 3.3 in place of 0.6745.

For instance, the huge error of a single direct observation is

given by

In Fig. 14 the abscissa OU represents the huge error, and the

area UDADU is 0.999 f the tota^ area
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Uncertainty of the Probable Error.

163. The value of the probable error r, deduced in Art. 67,

is the best attainable value, or rather the most probable value.

The inquiry is now to be made as to what are the probable

limits of this value of r, or what is the probable error of the

probable error. Or, if the probable error r be written in the

form
r(i u),

the number u is the uncertainty of the probable error, that is,

it as likely that the value formed for r lies between the limits

r(i
__ u }

and r(i -\~ u) as that it lies outside those limits.

Thus ur may properly be called tru, probable error of the

probable error r.

164. A series of observations having been made, all having

the same measure of precision h, the sum of the squares of the

errors is a constant, while the probability of any value //

is, by Art. 65,

and the value of h which renders this a maximum is the most

probable value of h. Now let h + uh be a value greater than

this probable value
;
then

is the probability of the value h + uh. The ratio of these

probabilities is

= (i+)V-

and taking the logarithms of both sides of this equation,

log -^7
= n log (i + u) (2u + u2

)h
2
*
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also replacing log (i + u) by u %u
2
,
the terms involving

higher powers of u being omitted, there results

log^ =
(
- 2h^x*}u - (i + h^x^u\

The value of h deduced in Art. 65 causes the co-efficient of u

to become zero, whence

pK p&quot;

log ,
= nu2 and

-p
= e MU\

Thus the probability of the variation uh in the value of h is

expressed by the function

P&quot; = ce~\

which is of the same form as the law of accidental error.

The probability that u is less than any assigned limit is

therefore, as in Art. 32, expressed by the integral

~tt f*u 2
zl e-^du = -7
71 &amp;lt;/o V

and the value of this integral is
,
as in Art. 61, when

/ = u Vn = 0.4769.

Consequently the probable error of the measure of precision h is

_ 0.4769
u 7=~

Vn

and hence the probable limits of h are

,0.^69, and hl_
\ Vn } \ Vn

Thus the uncertainty in the probable value of h has been found.

Now, since hr = 0.4769, the uncertainty in the value of r is
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the same as that in the value of h. The probable limits of the

probable value of the probable error r are, therefore,

r\ i ;=*- J and
Vn

and the uncertainty in r decreases directly as the square root

of the number of observations. Thus for four observations

the uncertainty in r is 24 per cent of its value, for 16 observa

tions it is 12 per cent of its value.

165. The above supposes that the probable error is computed

by the sums of the squares of the residuals according to for

mulas (20) and (21). If, however, formulas (35) and (36) be

employed, using the sum of the residuals only, then a similar

investigation will show that

/ 0.5096^ - / 0.5096^
r\ i 7=~] and r{ i H 7=~}t
\ yn J \ \/n I

are the probable limits of the probable error r. Here the

uncertainty is greater than in the former case, 1 14 observations

being necessary to give the same uncertainty in the probable

error as IOO observations give when (20) and (21) are used.

It may be noted, finally, that some writers state the above

expressions for the uncertainty so that Vn I appears in the

denominator instead of V n.

The Median.

166. When an odd number of direct measurements are made

on a single quantity, the middle one in the order of numerical

magnitude is called the median. Thus, if the results of nine

direct observations are

103, 104, 105, 106, 106, 107, 108, no, in,

the fifth one, counting from either end, is 106, which is the

median.
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If the number of observations be even, the median is the

mean of the two middle ones in the order of magnitude.

Thus, if to the above observations there be added 112, then

the median is J(io6 -[- 107) io6J. In the first case the

arithmetical mean is io6f and in the second case it is 107.2.

The median in general differs from the arithmetical mean.

When observations are weighted these weights are to be

rsed in counting off the large and small observations until the

middle one or the two middle ones are found, and then an

interpolation is made to find the median. For example, let

Observation = i, 2, 3, 4, 5,

Weight = 2, 5, 16, 10, 7.

Here the sum of the weights is 40, which may be taken as the

total number of direct observations, and the median plainly lies

between 2J- and 3^. Seven observations are less than 2-J and

seventeen are greater than 3\ ;
thus sixteen observations may

be said to lie between 2^ and 3^, and this interval is to be

divided in the ratio of 20 7 to 20 17. The median hence is

2i + it = 3A or aSain 3i
- A = 3A-

167. The probable error of a single observation is to be

found by counting off one-fourth of the residual errors from

both ends, and if these are not equal their mean may be

taken. Thus, for the following case wheie the median ;:s 33,

Observation = 31, 32, 32, 33, 33, 34, 35, 36,

Residual =
2, i, i, o, o, i, 2, 3,

the probable error found by counting off two residuals from

the left is i.o, while by counting off two from the right it is

1.5, the mean of these being 1.25, and then

1.2?=
7

= 44

is the probable error of the median itself.
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The median was first suggested by Galton in 1875* as a con

venient method of obtaining a mean without the necessity of

making man} 7 measurements. For example, if it were desired

to obtain the mean height of the boys in a school they might
be arranged in a row in the order of height and then the

measurement of the middle boy would give the median.

Further, if the probable variation in height were required it

would be only necessary to measure the two boys standing at

the quarter points of the line, and then subtract the mean of

their heights from the median. This gives the probable error

of a single height, and by dividing it by the square root of the

number of boys the probable error of the median height is

obtained.

The median, when obtained by the process indicated by
Galton, may be regarded as a representative value of the

mean quantity which is desired. But when all the individual

measures are actually taken, the arithmetical mean and not

the median is the most probable value, provided that the law

of variation is the same as the law of facility of accidental

error. To take the median in the latter case, for the sake of

avoiding computation, can only be justified when the observa

tions are rough ones, and then the median itself is liable to

differ considerably from the arithmetical mean. The use of

the median, except in the manner indicated by Galton, does

not seem warranted in cases of symmetric probability.

The uncertainty of the probable error of the median is

greater than that of the arithmetical mean, 217 observations

being necessary in the former case to give the same uncer

tainty as IOO observations give in the latter case.f

* Statistics by Intercomparison, Philosophical Magazine, vol. xlix, p. 33.

f See Gauss, Werke, vol. iv, pp. 109-117. See also Scripture, On mean

values from direct measurements, in Studies from Yale Psychological Labora

tory, 1894, vol. ii, pp. 1-39.
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History and Literature.

168. The average or arithmetical mean has, from the earliest

times, been employed for the determination of the most proba

ble value of a quantity observed several times with equal care.

From this arises so naturally the idea of weights and of the

weighted mean, that undoubtedly both were in use long before

any attempt was made to deduce general laws based upon

mathematical principles. About the year 1750 certain indi

rect observations in astronomy led to observation equations,

and the question as to the proper manner of their solution

arose. Boscovich in Italy, Mayer and Lambert in Germany,

Laplace in France, Euler in Russia, and Simpson in England,

proposed different methods for the solution of such cases, dis

cussed the reasons for the arithmetical mean, and endeavored

to determine the law of facility of error. Simpson, in 1757, was

the first to state the axiom that positive and negative errors

are equally probable; and Laplace, in 1774, was the first to

apply the principles of probability to the discussion of errors

of observations. Laplace s method for finding the values of q

unknown quantities from ;/ observation equations consisted in

imposing the conditions that the algebraic sum of the residuals

should be zero, and that their sum, all taken with the positive

sign, should be a minimum. By introducing these conditions,

he was able to reduce the n equations to q, from which the q

unknowns were determined. This method he applied to the

deduction of the shape of the earth from measurements of arcs

of meridians, and also from pendulum observations.

The honor of the first statement of the principle of Least

Squares is due to Legendre, who in 1805 proposed it as an

advantageous and convenient method of adjusting observations.

He called it
&quot; Methode des moindres quarres,&quot;

showed that

the rule of the arithmetical mean is a particular case of the



212 APPENDIX AND TABLES. XI.

general principle, deduced the method of normal equations, and

gave examples of its application to the determination of the

orbit of a comet and to the form of a meridian section of

the earth. Although Legendre gave no demonstration that

the results thus determined were the most probable or best,

yet his remarks indicated that he recognized the advantages of

the method in equilibrating the errors.

The first deduction of the law of probability of error was

given in 1808 by Adrain, in &quot;The
Analyst,&quot; a periodical pub

lished by him at Philadelphia. From this law he showed that

the arithmetical mean followed, and that the most probable

position of an observed point in space is the centre of gravity
of all the given points. He also applied it to the discussion of

two practical problems in surveying and navigation.

In 1809 Gauss deduced the law of probability of error as in

Arts 27, 28, and from it gave a full development of the method.

To Gauss is due the algorithm of the method, the determi

nation of weights from normal equations, the investigation of

the precision of results, the method of correlatives for condi

tional observations, and numerous practical applications. Few
branches of science owe so large a proportion of subject-matter

to the labors of one man.

The method thus thoroughly established spread among as

tronomers with rapidity. The theory was subjected during the

following fifty years to rigid analysis by Encke, Gauss, Hagen,

Ivory, and Laplace, while the labors of Bessel, Gerling, Hansen,

and Puissant, developed its practical applications to astronom

ical and geodetical observations. During the period since 1850,

the literature of the subject has been greatly extended. The

writings of Airy and De Morgan in England, of Liagre and

Quetelet in Belgium, of Bienayme in France, of Schiaparelli

in Italy, of Andra in Denmark, of Helmert and Jordan in

Germany, of Chauvenet and Schott in the United States, have
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brought the science to a high degree of perfection in all its

branches, and have caused it to be universally adopted by scien

tific men as the only proper method for the discussion of

observations.

169. In 1877 the author published, in the &quot; Transactions of

the Connecticut Academy,&quot; a list of writings relating to the

Method of Least Squares and the theory of the accidental

errors of observation, which comprised 408 titles. These were

classified as 313 memoirs, 72 books, and 23 parts of books.

They were written by 193 authors, 127 of whom produced only

one book or paper each. The date of publication of the earliest

is 1722. From that time to 1805, the year of Legendre s an

nouncement of the principle of Least Squares, there are 22

titles
;
since 1805 there is a continual yearly increase in the

number
;
thus :

From 1805 to 1814 inclusive, there are 18 titles.

From 1815 to 1824 inclusive, there are 30 titles.

From 1825 to 1834 inclusive, there are 32 titles.

From 1835 to 1844 inclusive, there are 45 titles.

From 1845 to 1854 inclusive, there are 63 titles.

From 1855 to 1864 inclusive, there are 71 titles.

From 1865 to 1874 inclusive, there are 95 titles.

The books and memoirs are in eight languages ; and, classified

according to the place of publication, they fall under twelve

countries. It may be interesting to note the number belonging
to each

;
thus :

Countries.

Germany 153
France 78

Great Britain . . . . 56
United States .... 34

Belgium 19

Russia 16

Italy 14

Countries.

Austria 10

Switzerland 9

Holland 7

Sweden . . . . . . 7

Denmark 5

Total 408



214 APPENDIX AND TABLES. XL

Languages.

German 167

French no
English 90
Latin 16

Italian 9

Languages.

Dutch 7
Danish 5

Swedish 4

Total 408

The titles of papers and books issued since 1876 maybe mostly
found in the excellent publication

&quot;

Jahrbuch uber die Fort

schritte der Mathematik.&quot;*

Constant Numbers.

170. In the preceding pages the constant numbers entering

the formulas for probable error have been stated only to four

decimal places, which is entirely sufficient for any practical

computation. As a matter of mathematical interest, however,

they are here given to seven decimals, together with a few other

related constants and their common logarithms.

Symbol.
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Answers to Problems ; and Notes.

171. Below are given answers to a number of the problems
stated in the text and hints concerning the solution of others,

together with explanatory notes upon some of the more diffi

cult points in the theory of the subject.

Article 16. Problem 2 : -^. Problem 3 : 0.9308 by the

use 01 Table V. Problem 5 : Find the probability of a hun

dred heads in a single throw of a hundred coins, and multiply
this by the number of inhabitants and the number of seconds

to find the probability of the occurrence under the given data.

Problem 6: The probability that the nickel is in the first purse
is if.

Article 26. The equation at the foot of page 20 may be

written in the form

y y 2.{Ax x)

y (m -h 2)Ax x

and, in passing to the limit, y y is infinitely small compared
to y, and Ax vanishes with respect to x. Hence in the second
member 2.x is infinitely small compared to the denominator,
and accordingly x vanishes with respect to

(;;/ -j- 2}Ax.

Article 37. Problem 2 : see Fig. 2 and Fig. 6. Problem 3 :

Show this by the principle of sufficient reason. Problem 5 :

because k depends upon h and h is different in the two Cases,

Problem 6 : From formula (2) an expression for n^ is found
}

then h, dx, x, and y are derived by observation and n is com
puted ;

thus for the case of Article 33 the probability of the

error
3&quot;. 5 may be roughly taken as that of the occurrence

between the limits 3^.0 and
4&quot;.o, so that the observed value of

y is
Y^-Q-,

and as dx is
i&quot;.o, there results

t _ hdx 100 X i
~
yghW

~
242.236 X 11-57

~
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whence TT = 4.48, a rude result indeed, but by increasing the

number of observations and decreasing ihj interval between

the successive errors a closer accordance may be secured.

Article 59. Problem 2 : N. 2 .4 E. Problem 3 : z
l

o. 19, # = + 0.14, z
3
= + 0.05, etc. Problem 4: Ty/ to A,

fs to B
y
and i- to C, the greater the weight the less ^~ing the

amount of correction.

2px
Article 67. The reason why 2fx*y is the same as-

is sometimes not clear to students. If each term such

occurs ny l
times in n observations, then

p^^.ny, +A*2

2

-^a + etc. = 2px\
or

y. + etc-)
=

^&amp;gt;*

3

;

whence, dividing by n, follows the statement as given.

Article 89. Problem i: o&quot;.4o8. Problems 3 and 4: The

combination of observations differing widely in precision, as

in these examples, is not always safe in practice, because of

the constant errors which are liable to affect the less precise

series, so that the practical weight of the more precise series is

often greater than that derived from the probable errors.

Problem 6: It should be inferred that a constant source of

error exists.

Article 98. Problem 2 : 0.000137, which occurs when A is

135 degrees. Problem 4: 0.005. Problem 6: The probable

error of the mean of the three readings is
,
and that of

the difference of level of two stations is this multiplied by

V~2\ then for the 130 stations there are 129 differences of level,

and the probable error of the final result is 0.0093 feet.

Article 107.
_The proof of this method may be made in

the following manner: Let */ and y/ be the adjusted values

of the observations x, and y l ,
so that the residual errors are
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ar/ ;F, and JF/ JV Then the most probable values of 5 and

T are to be found from the condition

^p(x \

~~ X\Y ~h ^(yi ~
JiY a minimum.

The adjusted points all lie upon the line whose equation is

y = Sx -j- T. Now let a second line be drawn through the

observed point whose co-ordinates are x
l
and y l , and the ad-

j istecl point whose co-ordinates are x{ and j/; its equation is.

y y }

= S (x .*-,). By combining this with the equation of

the required line the values of the residual errors are deduced,
whence the ?bove condition becomes

, I r-/2

- -- -^(Sx -j- T yY = a minimum,
f

l*J o

This is to be made a minimum for 5r

, 5, and T separately.

Taking the derivative with respect to S and equating to zero

there is found S S-\-p = o, which gives the inclination S in

terms of 6&quot;. Again, differentiating with respect to vS and T
there are deduced two equations in 5 and T, namely,

and the solution of these gives values for 5 and T which agree
with the results stated in the text.

Article 112. Problem 6: Let / represent the population in

millions and x the number of decades since 1800. Then using
the ten censuses from 1790 to 1880, there is found

p = 4.97 -f 0.873^ -f 0.581^,

which gives 59890000 for 1890, while the actual enumeration

was 62 870000. Again, taking the seven censuses from 1820

to 1880, there is found

/ = 7.29 0.2800: + o.689^:
2

,

which gives 60 579000 for 1890, an accordance more satisfac^

tory. The sum of the squares of the residual errors for the
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latter formula is 1.35, while for the same seven census years

the former gives 3.34.

Article 113. Whether observations shall be independent

or conditioned depends in general upon the selection of the

unknown quantities whose values are to be determined. Thus

if A OB, BOC, and AOC are angles measured at a station
&amp;lt;9,

the observation equations are independent if x and y be put

for two of these angles. But if x, y, and z are taken as the

three quantities, these are conditioned by the necessary rela

tion that the sum of two of them is equal to the third.

Article 126. Problem I : Refer to problem 4 of Article

59. Problem 2: x = 93 4 i4&quot;-99 y = 5 54 59
/;-H * =

34 i6 49&quot;.22.
Problem 5: This was the problem proposed

by Patterson in 1808, and by whose discussion Adrain was led

to the discovery of the principle of least squares.

Article 144. The arithmetical mean of more than two ob

servations is, in strictness, the most probable value only when

the results of the measurements are unknown. If the mind

knows the values of the measurements, it instinctively assigns

greater reliability to some than to others, and hence the weight-

are not equal. For example, let M, 40, M9
=

5 ! ^ 5 2

be three observations of the same quantity: it is reasonable

to suppose that M, is of less reliability than the others, while

the method of the mean assigns it the same weight. Theory

has not been able to determine what theoretical weight-

should be assigned in a case like this, but probably an ap

proach to them might be secured by taking the reciprocal of

(M^ M$ + (M, - M$ as the weight of Mlt the reciprocal

O f ^ -V,)
2 + (M9

- My as the weight of M9 ,
and that of

(Mt MJ + (M,
- My as the weight of Mt

. For the above

numerical example this gives^ as the weight of 40, T^ as

the weight of 51, and T-^ as the weight of 52, from which

results the general mean z = 49.18, whereas the arithmetical

vnean is 47-67-
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Description of the Tables.

172. Tables I and II give values of the probability integral

(4) ;
the first for the argument Jix, and the second for the argu

ment
,
or -. In both cases the arrangement is like that

0.4769 r

of logarithmic tables, and needs no explanation. The use of

Table I is illustrated in Arts. 32 and 33, and that of Table II

in Art. 128. These tables were first given by Encke in 1832,
and were computed by him from a table of the values of fc~*

2

dt,

which was published by Kramp in 1799.

Tables III and IV give values of the co-efficients which
occur in the formulas for probable error for values of ;/. Table
III applies to the usual formulas (20) and (21), and its use is

illustrated in Art. 82. Table IV applies to the shorter formulas

(35) and (36), and its use is illustrated in Art. 84. These tables

were computed by Wright, and first published in &quot; The Ana
lyst

&quot;

for 1882, vol. ix, p. 74.

Table V gives four-place logarithms of numbers, and Table
VI gives four-place squares of numbers. The latter will be

found very useful for obtaining the squares of residuals. It

may be also used in forming the co-efficients in normal equa
tions, and for other purposes. For instance, the co-efficient

\ab~] may be written

and the sums [V], [

2

], and \_(a -f b) } may be easily formed with

the help of the table of squares. This method has the advan

tage that no attention need be paid to the signs of a and b,

except in forming the sums a + b.

Table VII is to be used in discussing doubtful observations

oy Chauvenet s criterion, and its use is explained in Art. 130.
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Table VIII gives the squares of reciprocals of numbers from

o.o to 9.0, and may be used in the computation of weights from

probable errors.

TABLE I.

Values of the Probability Integral ~ \e~~*dt for Argument /or hx.
V &quot;&quot;Jo

hx.
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TABLE II.

Values of the Probability Integral I e W/ for Argumentrl 0.4769 r

JC

r
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TABLE III.

For Computing Probable Errors by Formulas (20) and (21).

1

n.
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TABLE IV.

For Computing Probable Errors by Formulas (35) and (36).

n.
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TABLE V. Common Logarithms.

n o i 234
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TABLE V. Common Logarithms.

11
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TABLE VI. Squares of Numbers.

n



SQUARES OF NUMBERS. 227

TABLE VI. Squares of Numbers.

n
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TABLE VII. For Applying Chauvenet s Criterion.

,/,
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INDEX.

Accidental errors, 4

Adjustment, i, 36, 51, 88, 101, 109,

141 187

Angle measurements, 104, 171

repetition, 106

Angles, 3, 90, 98, 122, 163

at a station, 117, 145

in a quadrilateral, 147, 150

in a triangle, 142

Areas. 3, 106

Arithmetical mean, 42, 70, 211, 218

Axioms, 13

Base lines, 100, 102

Binomial formula, 10

Borings, 140

Certainty, 6

Chaining, 103

Chauvenet s criterion, 166, 228

Coins, throwing of, 9

Comparison of observations, I, 66

Conditioned observations, 2, 57, 86,

141, 192

Constant errors, 3, 169

Constants, 214

Correlatives, 60

Criterion for rejection, 166

Curve of probability, 15, 25, 204

Declination, magnetic, 134

Direct observations, 2, 41, 88

Doubtful observations, 166

Earth, temperature of, 140

Empirical constants, 124

formulas, 130

Equal weights, 88

Equations, non-linear, 200

normal, 46, 56, 175

observation, 58

solution of, 175

Error, definition of, 5

law of, 13, 17, 22

probability of, 13, 162

propagation of, 75

Experience, axioms from, 13

Functions of observations, 90

Gauss s discussions, 22, 175. 181,

212

General mean, 42, 72

Geodesy, 151, 214

Guessing, problem on, 174

Hagen s proof, 17, 168

History of Least Squares, 211

Huge error, 205

Impossibility, 6

Independent observations, 2, 51, 79,

100

Indirect observations, 2, 43

Instrumental errors, 4

Level lines, 44, no, 157

Levelling, 154
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Linear measurements, 101

Litetature of Least Squares, 213

Logarithmic computation, 190

Logarithms, 219, 224

Magnetic declination, 134

Mean error, 204

Measure of precision, 34, 68

Median, 208

Mistakes, 4, 169

Most probable value, 2, 9, 38

Non-linear equations, 200

Normal equations, 46, 56, 175

Observation equations, 58

Observations, adjustment of, i, 36,

88, loi, 109, 141

classification of, 2

discussion of, 162

errors of, 3, 5, 13

precision of, 66

rejection of, 166

weights of, 36

Orbit of a planet, 129

Peirce s criterion, 169

Pendulum, 124

Population of United States, 202, 217

Principle of Least Squares, 38, 211

Probability, 6, 9.

Probability curve, 13, 25, 68

integral, 27, 220, 221

of error, 13, 162, 212

Probable error, 66, 70, 72, 79, 86, 92,

195, 204

Propagation of error, 75

Quadrilateral, 147

Quetelet s statistics, 175

Reciprocals, squares of, 228

Rejection of observations, 166

Repetition of angles, 106

Residual, 5, 39

Rivers, velocity in, 131

Shooting at target, 13, 165

Social statistics, 172

Solution of equations, 56, 175

Squares of numbers, 227

reciprocals, 228

Station adjustment, 118, 145

Statistics, 162, 172

Tables, 220-228

Target shots, 13, 165, 170

Theory and experience, 31

Triangle adjustment, 59, 142

Triangulation, 152

Uncertainty of median, 210

probable error, 206

Unequal weights, 51, 95, 122

Velocity observations, 131, 138

Weighted mean, 43

observations, 37, 51, 187

residuals, 39

Weights, 36, 69, 196

Wright s probable-error tables, 219,

222, 223
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